STUDY OF SERUM LEVELS AND SKIN EXPRESSION OF S100B PROTEIN IN PSORIASIS

Thesis

Submitted for partial fulfillment of master degree in Dermatology, Venereology and Andrology

BY

Omneya Osama El- Hagry

M.B.B.Ch

Faculty of Medicine - Ain Shams University

Supervised by

Prof. Dr. Samar Abdallah Mohamed Salem

Professor of Dermatology, Venereology and Andrology Faculty of Medicine - Ain Shams University

Prof. Dr. Hanaa Mohamed El-Sayed Emam

Professor in Dermatology and Venereology Research Department National Research Centre

Dr. Ekramy Ahmed El-Khateeb

Lecturer of Dermatology, Venereology and Andrology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2013

دراسة مستوى بروتين \$100 في مصل الدم و ظهوره في الجلد في مرض الصدفية

رسالة مقدمة من أمنية أسامة الحاجري

بكالوريوس الطب والجراحة - كلية الطب ، جامعة عين شمس

توطئة للحصول على درجة الماجستير في الأمراض الجلدية و التناسلية و الذكورة

تحت إشراف

أ.د. / سمر عبد الله محمد سالم أستاذ الأمراض الجلدية و التناسلية و الذكورة كلية الطب -جامعة عين شمس

أ.د. / هناء محمد السيد إمام أستاذ بقسم بحوث الأمراض الجلدية و التناسية المركز القومي للبحوث

د. / إكرامى أحمد الخطيب مدرس الأمراض الجلدية و التناسلية والذكورة كلية الطب -جامعة عين شمس

كلية الطب – جامعة عين شمس 2013

ACKNOWLEGEMENT

Thanks to *God* first and foremost. I feel always indebted to God, the most kind and the most merciful.

I would like to express my great gratitude and respect to *Prof. Dr. Samar Abdalla Salem*, *Professor of Dermatology, Venereology and Andrology, Ain Shams University*, for giving me the privilege of being under her supervision in this thesis, and thank her for her outstanding encouragement, advice and her sincere endless support throughout this work, *Dr. Ekramy El Khateeb*, *Lecturer of Dermatology*, *Venereology and Anndrology*, *Ain Shams University*, for his great care and patience, sincere guidance, tremendous effort and continuous valuable advice through out this work.

I am deeply indebted to Prof. Dr. Hnaa Imam, Professor in Dermatology and Venereology, National Research Centre, for her great continuous cooperation and supervision all to the end of this thesis, Pof. Dr. Wafaa Abdelaal, Professor of Pathology, National Research Centre, Dr. Reham El Nemr, Assistant Professor of Pathology, National Research Centre, and Prof. Dr. Mervat Harvy, Professor of Medical Biochemistry, National Research Centre, for their remarkable efforts, considerable help, and continuous supervision and guidance which were the major factors behind the completion of this thesis.

CONTENTS

Pa	ge
List of Abbreviations	III
List of Tables	\mathbf{V}
List of Figures	VII
INTRODUCTION & AIM OF THE WORK	1
REVIEW OF LITERATURE	5
Chapter 1: Psoriasis	5
History of psoriasis	5
Epidemiology	6
Precipitating factors for psoriasis	7
Genetics	10
Clinical picture of psoriasis	12
Assessment of psoriasis severity	17
Histopathology	18
Pathogenesis of psoriasis	19
Role of S100 proteins	31
Treatment of psoriasis	33
Chapter 2: S100 Proteins	37
Genetics	37
Structure	39
Physiological functions	42
Receptor and signalization	43
Normal expression	44
Normal Expression of S100 proteins in the skin	45
Role of \$100 proteins in skin	46
Pathological expression of \$100 proteins	49
Pathological expression of S100 proteins in skin	50

Chapter 3: S100B Protein	52
Genetics	52
Structure	52
Role	53
Source	54
Expression of S100B in the body	55
Expression of S100B protein in normal skin	55
Pathological expression of S100B	57
Pathological expression of S100B in skin	58
Regulation of expression	59
S100B protein and psoriasis	61
S100B protein and stress	61
S100B effects on monocytes/macrophages,	62
T-lymphocytes, and neutrophils	
S100B and innate immunity	63
SUBJECTS AND METHODS	64
RESULTS	77
DISCUSSION	101
SUMMARY	108
CONCLUSION AND RECOMMENDATIONS	112
REFERENCES	113
ARABIC SUMMARY	_

LIST OF ABBREVIATIONS

ABC Avidin–biotin–peroxidase complex

APC Antigen presenting cell

Ca²⁺ Calcium

CLA Cutaneous lymphocyte antigen

CNS Central nervous system

Cu²⁺ Copper

CXC Chemokines

DAB Diaminobenzidine

DC Dendritic cell

EDC Epidermal differentiation complex

Endoplasmic reticulum

GFAP Glial fibrillary acidic protein

GH Growth hormone

GM-CSF Granulocyte-macrophage colony stimulating factor

HLA Human leukocytic antigen
HRP Horseradish peroxidase

ICAM-1 Intercellular adhesion molecule-1

IFN-γ Interferon gamma

IgG1 Immunoglobulin G (subtype 1)

IL-1β Interleukin-1 beta

IL-2 Interleukin-2 IL-8 Interleukin-8

IP-10 Inducible protein-10 Inducible protein-10

kDa Kilo Dalton

LFA-1 Lymphocyte functional associated antigen-1

MHC Major histocompatibility complex

MIF Macrophage migrating inhibiting factor
MIG Monokine induced by interferon gamma

Neurite extension factor

NKT Natural killer cell

OR Odds ratio

PASI Psoriasis Area Severity Index

PBS Phosphate Buffered Saline

PRA Prolactin receptor associated protein

PRL Prolactin

PSORS Psoriasis susceptibility locus

PUVA Psoralin + ultraviolet rays type A

RA Rheumatoid arthritis

RAGE Receptor for advanced glycation endproducts

RANTES Regulated upon Activation, Normal T-cell Expressed, and Secreted

RT Room temperature

STAT4 Signal transducer and activator of transcription 4

T-AP T-cell/APC interactions

interactions

T-bet T cell-associated transcription factor
TGF- β Transforming growth factor -βbeta

Th T helper

TMB Tetramethylbenzidine

TNF- α Tumor necrosis factor α alfa

T-reg T-regulatory cell

UVB Ultraviolet rays type B

VCAM-1 Vascular cell adhesion molecule-1
VEGF Vascular endothelial growth factor
VEG-F Vascular endothelial growth factor

VLA-4 Very late antigen-4

Zn²⁺ Zinc

5-hydroxytryptamine (serotonin) receptor 1A

LIST OF TABLES

Table No.	Title P	age
1	PSORS loci, their approximate location and association with other inflammatory diseases	11
2	Calculation of PASI score	17
3	Cytokines and chemokines that play a role in the immunologic cascade of psoriasis	28
4	Treatment options in psoriasis	35
5	Summary of some biologics and their action	36
6	S100 proteins in normal skin and their common names	45
7	S100 proteins in clinical diagnostic	50
8	Expression of S100 proteins in skin diseases	51
9	Regulation of S100B expression	60
10	Regulation of S100B secretion/release	60
11	Comparison between cases and controls regarding age and sex	78
12	Descriptive clinical and laboratory data	79
13	Histopathological scoring of expression of S100B protein among all +ve studied groups (number and percent)	81
14	Comparison of different clinical variants of psoriasis and controls regarding age, and between psoriasis variants regarding duration of disease (years), age at disease onset (years) and mean PASI score	86
15	Comparison between psoriasis patients and controls regarding the mean serum level of S100B (t test)	87
16	Correlation between serum level of S100B protein and different variables age, age at disease onset, disease duration, and PASI scoren (Spearman test)	89
17	Comparison of serum level of S100B protein in males and females among psoriatic patients (Mann whitney test)	89

18	Comparison between mean serum level of S100B protein among psoriatic patients with different clinical variants regarding (Kruskal-wallis test)	91
19	Comparison between lesional skin and non lesional skin regarding frequency of positive S100B skin expression (chi square test)	92
20	Comparison between different types of psoriasis regarding frequency of S100B protein positive skin expression in lesional and non lesional biopsies (chi square test)	93
21	Comparison between males and females as regards rate of positive S100B skin expression (chi square test)	94
22	Comparison between grades of S100B expression among cases in lesional and non lesional skin biopsies (chi square test)	95
23	Comparison between the grades of S100B protein skin expression in lesional and non lesional in males and females (Kruskal-wallis test)	97
24	Comparison between males and females as regards grades of S100B skin expression in lesional and non lesional skin biopsies of psoriasis patients (chi square test)	98
25	Comparison between clinical psoriasis variants regarding lesional and non lesional S100B skin expression (chi square test)	99
26	Comparison between serum level of S100B protein in relation to skin expression (Kruskal-wallis test)	100
27	Correlation between S100B serum level and S100B skin expression (Sperman's test)	100

LIST OF FIGURES

Fig. No.	Title I	Page
1	Clinical picture of psoriasis	16
2	Histopathology of psoriasis	19
3	Pathogenesis of a psoriatic lesion	22
4	T cell activation signals	23
5	Activation of naïve CD4+ T-cells by APCs and the development of different active CD4+ T-cell lineages	24
6	Five steps of skin infiltration of T-cells	26
7	The psoriatic cascade	27
8	Psoriasis treatment ladder	33
9	S100 gene cluster on human chromosome 1q21	38
10	Overall structure of S100 proteins	39
11	The alignment of amino acid sequence of S100 proteins	40
12	Model of S100 protein/target protein interaction	41
13	S100 protein as chemotactic agents	46
14	S100 protein in membrane remodeling	47
15	S100 proteins as ca++ channels	47
16	S100 protein as cornified envelope component	48
17	Transglutaminase-mediated S100 protein inactivation	48
18	S100 protein nuclear target	49
19	Immunoreactivity of S100B protein in normal skin and skin appendages	56
20	Age distribution of the study sample	78
21	Sex distribution of the study sample	78
22	Percentages of psoriasis types	80

23	Mean S100B serum levels in cases and controls	80
24	(a) Non lesional skin of psoriasis patient, (b) Non lesional skin of psoriasis patient, (c) Lesional psoriatic skin, (d) Lesional psoriatic skin, (e) Normal skin of control with normal epidermis and dermis, (f) Normal skin of control showing negative staining for S100B	82
25	(a) Non lesional skin of psoriasis patient, (b) Non lesional skin of psoriasis patient, (c) Lesional psoriatic skin, (d) Psoriatic lesional skin with moderate cytoplasmic positivity (+1 grade), (e) Normal skin of control with normal appearance of the epidermis and dermis, (f) Normal skin of control showing negative staining for \$100B.	83
26	(a) Non lesional skin of psoriasis patient, (b) Lesional psoriatic skin, (c) Normal skin of control showing negative staining for S100B in the epidermis	84
27	(a) Non lesional skin of psoriasis patient, (b) Lesional psoriatic skin, (c) Normal skin of control showing negative staining for S100B in the epidermis	85
28	Comparison between different variants of psoriasis and control regarding age, and between psoriasis variants regarding duration of the disease, age at disease onset and PASI score	87
29	Mean S100B serum levels in cases and controls	88
30	Comparison of serum level of S100B protein in males and females among psoriatic patients	90
31	Mean S100B serum level in different types of psoriasis and control	92
32	Comparison between different types of psoriasis regarding frequency of S100B protein positive skin expression in lesional and non lesional biopsies (chi square test)	94
33	S100B expression in lesional, non lesional skin of psoriasis patients	96

INTRODUCTION

Psoriasis chronic relapsing skin is condition a population worldwide characterized affecting the epidermal hyperplasia and parakeratosis (Raut et al, 2013). and environmental etiology includes genetic The factors (Weigle and McBane 2013). Sharply demarcated margins with clear-cut borders are the hallmark of psoriatic lesions. erythema morphological Additional features include and Sometimes, pustular lesions scaling. coexist. Scaling stable chronic plaque predominates in psoriasis, whereas erythema is the dominant feature of unstable progressing lesions. Lesions may sting, itch and bleed easily (Naldi and Gambini, 2007).

Psoriasis represents T-cell mediated autoimmune disorder. In spite of significant advances in understanding the pathogenesis of psoriasis, the exact etiology of the disease remains unknown (*Raut et al, 2013*). Numerous immunologic, bioregulatory and biochemical changes accompanying this disease were described (*Ghoreschi et al, 2007*).

The S-100 family of proteins are acidic calcium and zinc binding low molecular weight proteins mainly present in astrocytes and in a population of oligodendrocytes of the CNS

(*Hattinger et, 2013*). Thay are found exclusively in vertebrates with at least 25 members found to date in human. They constitute the largest subfamily of the EF-hand proteins (*Santamaria-Kisiel et al, 2006*).

S100 proteins are proposed to have intracellular and extracellular roles in the regulation of many diverse processes such as protein phosphorylation, cell growth and motility, cell-cycle regulation, transcription, differentiation, Ca²⁺ homeostasis and cell survival (*Santamaria-Kisiel et al, 2006*) by serving as calcium sensor proteins that, upon activation, regulate the function and/or subcellular distribution of specific target proteins (*Donato, 1999*). They play a role in the pathogenesis of epidermal diseases, as selected S100 proteins are markedly overexpressed in psoriasis, wound healing, skin cancer, inflammation, cellular stress, and other epidermal states (*Eckert et al, 2004*).

S100B protein is normally present in the epidermis in Langerhans' cell and melanocytes and in dermis in Schwann cells, sensory corpuscles and sweat glands. On the other hand, it is abnormally expressed in melanocytic lesions, such as, nevi, melanoma and melanoma metastases (*Boni et al, 1997*). In general, it is expressed in dendritic cells and cells of neurogenic origin. Increased circulating S100B levels have been also demonstrated in

gastrointestinal cancer, neurological diseases including minor and severe head trauma, subarachnoid hemorrhage and cerebral infarction, neurodegenerative processes, peripheral nervous system lesion and/or impairment, cardiopulmonary bypass surgery, cerebrovascular or cardiovascular ischemic disease, and cardiac arrest (*Undén et al*, 2004).

Studies showed that there is elevation of S100B protein level in the sera of psoriatic patients which is directly correlated with the severity of psoriasis by PASI score (*Paradisi et al, 2007*).

AIM OF THE WORK

The aim of this thesis is to evaluate the level of S100B in psoriasis through immunohistochemical and serological studies to assess its possible involvement in the pathogenesis of psoriasis.