Acknowledgements

First, and foremost, thanks are for **God**, to whom I relate any success in achieving any work in my life.

It is my pleasure to express my gratitude to the people without whom this thesis would not be possible.

I wish to express my deep appreciation and profound gratitude to **Prof. Abdel Nasser B. Singab**, Professor of Pharmacognosy, Dean of Faculty of Pharmacy, Ain Shams University, for his scientific merit, helpful suggestions and encouragement throughout this work. His kind supervision, valuable comments, and constant guidance have served much in the construction of this work. Thanks for his precious time, and his support.

I would like to express my deepest thanks and grateful appreciation to **Prof.**Nahla A. Ayoub, Professor, Faculty of Pharmacy, Ain Shams University, to whom I owe more than words can express. I would like to thank her for suggesting the research point, and for her close experienced supervision. Her limitless help, valuable advice and kind encouragement are beyond acknowledgment. She provided me with the best knowledge and facilities without which I would never be able to complete this work. Besides, she put me on the track and benefited my whole career in a sense I will never forget. I will remain indebted to her sincere and mother like encouragement, she will remain a model of wisdom and patience to me. I am very proud being one of her students.

I owe special gratefulness and much regards to **Dr. Omaima A.**Eldahshan, lecturer of Pharmacoconosy, Faculty of Pharmacy, Ain Shams

University for her active guidance and continuous encouragement. Her

never fading patience, and outstanding enthusiasm have been of great

support throughout this work. Thanks for her precious time, valuable advice

and constructive comments.

I am also indebted to **Prof.** Ashraf B. Abdel-Naim Professor of Pharmacology, Faculty of Pharmacy, Ain Shams University for hosting the biological studies and his efforts during writing of the thesis. A special thanks to **Dr.** Ahmed Esmat Abdelrazek, lecturer of Pharmacology and **Dr.** Mai Fathy Tolba, Ass. Lecturer of Pharmacology at Pharmacology department, Faculty of Pharmacy, Ain Shams University for their constructive cooperation in performing the biological studies.

A special debt of gratitude, cordial appreciation and deep thanks to my colleagues for their cooperation, support and for the close friendship we share.

I would also like to record my thanks and sincere gratitude to my dearest great parents whom I really love and respect, I am proud to be their daughter. Their endless care and support and their deep believe in me have always helped me to succeed in achieving my goals. God bless them for me.

Finally, I would like to thank my dear husband, for his continuous help, encouragement, close support and patience for which I am really grateful. My daughter, Salma whom I hope will always be proud of me as I am of her.

Mariam Ibrahim Gamal El-Din

Cairo, 2013

List of contents

Content	Page
Acknowledgment	i
List of contents	iii
List of figures	vi
List of tables	ix
List of abbreviations	vi
1-Introduction	1
2-Review of Literature	
I. Chemical review	
1) Chemical review of family Fabaceae	3
2) Chemical review of subfamily Mimosoideae	5
3) Chemical review of genus Enterolobium	23
II.Biological review of genus Enterolobium	28
III. Folk uses of genus Enterolobium	33
3-Taxonomy	36
4-Material, Apparatus and Methods	
I. Material	40
1) Plant material	40
2) Materials for the phytochemical investigation of	the aqueous
methanol leaf extract of Enterolobium timbouva	40
3) Materials for the biological investigation of aqueous	methanol leaf
extract of Enterolobium timbouva	44
II. Apparatus	46
III. Methods	47
1) Methods for the phytochemical investigation of aque	eous
methanol leaf extract of Enterolobium timbouva	47
2) Methods for the biological Investigation of aqueous	methanol leaf
extract of Enterolobium timbouva	52

5. Chapter (1): Phytochemical Investigation of the aqueous methanol leaf extract of *Enterolobium timbouva*

A. Phytochemical screening of the aqueous methanol leaf extract of Enterolobium timbouva	58
B. Phytochemical investigation of the aqueous methanol leaf extract of Enterolobium timbouva	of
I.Qualitative analysis of phenolics in the extract	59
II.Chromatographic investigation.	
Paper chromatographic investigation	60
Column chromatographic investigation	60
III. Isolation of compounds (1-10) from the column fractions (I-VII)	61
Fraction II	
Fraction II	
Isolation of compound (1)	
Identification of compound (1): Caffeic acid	62
Fraction III	
Isolation of compounds (2), (3) and (4)	
Identification of compound (2):Isoquercitin Identification of compound (3):Hyperin	
Identification of compound (4):Astragalin	
Fraction IV	
Isolation of compounds 5 and 6	84
Identification of compound (5): Hesperidin	85
Identification of compound (6): Rutin	91
Fraction V	
Isolation of compounds 7 and 8	
Identification of compound (7): Quercetin	
Identification of compound (8): Kaempferol	100
Fraction VI	404
Isolation of compounds 9 and 10 Identification of compound (9): Herniarin	
Identification of compound (10): Chrysin	
	_

6. Chapter (2): Biological Investigation of the aqueous methanol leaf
extract of Enterolobium timbouva
I. In vitro assay for cytotoxic activity of Enterolobium timbouva aqueous
methanol leaf extract and some isolated pure113
II. Comparative study on the hepatoprotective activities of hesperidin
(5) and rutin (6) isolated compounds124
General summary132
Conclusions and recommendations135
References
Arabic summary

List of figures

Figur	re	Page
1.	Photo of tree of Enterolobium timbouva	8
2.	Photo of stem bearing leaves of Enterolobium timbouva	8
3.	Photo of flowers of Enterolobium timbouva	39
4.	Photo of fruit of Enterolobium timbouva	39
5.	ALT standard calibration curve	54
6.	AST standard calibration curve	56
7.	¹ H-NMR spectrum of compound (1): Caffeic acid; 3, 4-dihydroxy-cinnamic acid	ł
	(full spectrum)	65
8.	¹ H-NMR spectrum of compound (1): Caffeic acid; 3, 4-dihydroxy-cinnamic acid	ł
	(aromatic region)	66
9.	¹³ C-NMR spectrum of compound (1): Caffeic acid; 3, 4-dihydroxy-cinnamic	
	acid	.67
10.	¹ H-NMR spectrum of compound (2): Quercetin-3- <i>O-β</i> -D-glucopyranoside;	
	Isoquercitrin (full spectrum)	71
11.	¹ H-NMR spectrum of compound (3): Quercetin-3- <i>O-β</i> -D-galactopyranos	ide;
	Hyperin (full spectrum)	.75
12.	¹ H-NMR spectrum of compound (3): Quercetin-3- <i>O-β</i> -D-galactopyranos	ide;
	Hyperin (aromatic region)	.76
13.	¹ H-NMR spectrum of compound (3): Quercetin-3- <i>O-β</i> -D-galactopyranoside;	
	Hyperin (full spectrum) TFA	.77
14.	¹ H-NMR spectrum of compound (3): Quercetin-3- <i>O-β</i> -D-galactopyranoside;	
	Hyperin (aromatic region) TFA	.78
15.	13 C-NMR spectrum of compound (3): Quercetin-3- <i>O</i> - β -D-galactopyranos	ide;
	Hyperin	.79
16.	13 C-NMR spectrum of compound (3): Quercetin-3- <i>O</i> - β -D-galactopyranos	ide;
	Hyperin (expansion)	83
17.	1 H-NMR spectrum of compound (4): Kaempferol-3- <i>O</i> - β -D-glucopyranoside;	
	Astragalin (full spectrum)	86
18.	¹ H-NMR spectrum of compound (5): 3', 5, 7-trihydroxy-4'-methoxy -flavanone-	7-
	o - ß -rutinoside; Hesperetin-7-O-rutinoside; Hesperidin (full spectrum)	87

19.	'H-NMR spectrum of compound (5): 3', 5, 7-trihydroxy-4'-methoxy -flavanone- 7-
	o - ß -rutinoside; Hesperetin-7-O-rutinoside; Hesperidin (full spectrum)88
20.	¹ H-NMR spectrum of compound (5): 3', 5, 7-trihydroxy-4'-methoxy -flavanone- 7-
	o - ß -rutinoside; Hesperetin-7-O-rutinoside; Hesperidin (sugar region)89
21.	¹ H-NMR spectrum of compound (5): 3', 5, 7-trihydroxy-4'-methoxy -flavanone- 7-
	o - ß -rutinoside; Hesperetin-7-O-rutinoside; Hesperidin (aromatic region)90
22.	¹ H-NMR spectrum of compound (6): Quercetin-3- <i>O-α</i> -L-rhamnopyranosyl-(1```-
	6``)- β -D-glucopyranoside; Quercetin 3-O-rutinoside; Rutin (full spectrum)94
23.	¹ H-NMR spectrum of compound (6): Quercetin-3- <i>O-α</i> -L-rhamnopyranosyl-(1```-
	6``)-β-D-glucopyranoside; Quercetin 3-O-rutinoside; Rutin (aromatic region)95
24.	¹ H-NMR spectrum of compound (7): Quercetin (full spectrum)99
25.	¹ H-NMR spectrum of compound (8): Kaempferol (full spectrum)102
26.	¹ H-NMR spectrum of compound (8): Kaempferol (aromatic region)103
27.	¹ H-NMR spectrum of compound (9): 7-methoxycoumarin; Herniarin; Ayapanin
	(full spectrum)107
28.	¹ H-NMR spectrum of compound (9): 7-methoxycoumarin; Herniarin; Ayapanin
	(aromatic region)108
29.	¹ H-NMR spectrum of compound (10): 5,7-dihydroxyflavone; Chrysin (full
	spectrum)111
30.	¹ H-NMR spectrum of compound (10): 5,7-dihydroxyflavone; Chrysin (aromatic
	region)112
31.	Cytotoxic activity of the aqueous methanol leaf extract of Enterolobium timbouva
	on MCF-7 cell line115
32.	Cytotoxic activity of the aqueous methanol leaf extract of Enterolobium timbouva
	on HCT ₁₁₆ cell line116
33.	Cytotoxic activity of the aqueous methanol leaf extract of Enterolobium timbouva
	on HEp ₂ cell line116
34.	Cytotoxic activity of the aqueous methanol leaf extract of Enterolobium timbouva
	on HeLa cell line117
35.	Cytotoxic activity of the aqueous methanol leaf extract of Enterolobium timbouva
	on PC-3 cell line117
36.	Cytotoxic activity of the aqueous methanol leaf extract of Enterolobium timbouva
	on Huh-7 cell line118

37.	Cytotoxic activity of caffeic acid (1) on Huh-7 cell line	118
38.	Cytotoxic activity of Isoquercitrin (2) on Huh-7 cell line	119
39.	Cytotoxic activity of hesperidin (5) on Huh-7 cell line	119
40.	Cytotoxic activity of rutin (6) on Huh-7 cell line	120
41.	Cytotoxic activity of quercetin (7) on Huh-7 cell line	120
42.	Cytotoxic activity of herniarin (9) on Huh-7 cell line	121
43.	Cytotoxic activity of chrysin (10) on HepG2 cell line	121
44.	Cytotoxic activity of rutin (5) on Huh-7 cell line after 3 hours exposure	123
45.	Cytotoxic activity of hesperidin (6) on Huh-7 cell line after 3 hours exposur	e123
46.	Principle of superoxide dismutase assay	126
47.	The effect of hesperidin (5) and rutin (6) isolated compounds on marker e	nzyme
	(ALT)	128
48.	The effect of hesperidin (5) and rutin (6) isolated compounds on marker e	nzyme
	(AST)	129
49.	The effect of hesperidin (5) and rutin (6) isolated compounds on SOD	
	activity	131
50.	The effect of hesperidin (5) and rutin (6) isolated compounds on MDA	
	content	131
51.	Scheme for the extraction and isolation of the aqueous methanol leaf ext	ract of
	Enterolobium timbouva	133

List of tables

Table	Page
1.	Apigenin flavones4
2.	Miscellaneous flavones5
3.	Kaempferol flavonols7
4.	Quercetin flavonols8
5.	Myricetin flavonols10
6.	Miscellaneous flavanones13
7.	(+)-Catechins14
8.	(-)-Epicatechins16
9.	Miscellaneous chalcones20
10.	Chromatographic solvent systems used for investigation of phenolic
	compounds using paper chromatographic technique41
11.	Concentration scheme of SRB assay reagents44
12.	Concentration scheme of ALT assay reagents45
13.	Concentration scheme of AST assay reagents45
14.	Fresh preparation scheme of SOD assay reagents45
15.	Concentration scheme of MDA assay reagents46
16.	Concentration scheme for plotting ALT standard calibration curve
17.	Concentration scheme for plotting AST standard calibration curve 55
18.	Results of phytochemical screening of the aqueous methanol leaf extract of
	Enterolobium timbouva58
19.	Results of qualitative analysis of phenolics in Enterolobium timbouva
	aqueous methanol leaf extract59
20.	Results of column chromatographic fractionation of aqueous methanol leaf
	extract of Enterolobium timbouva61
21.	Chromatographic and spectral data of compound (1)64
22.	Chromatographic and spectral data of compound (2)70
23.	Chromatographic and spectral data of compound (3)74

24.	Chromatographic and spectral data of compound (4)	82
25.	Results of column fractionation of crystallized part of fraction IV	84
26.	Chromatographic and spectral data of compound (5)	86
27.	Chromatographic and spectral data of compound (6)	93
28.	Results of column fractionation of crystallized part of fraction V	96
29.	Chromatographic and spectral data of compound (7)	98
30.	Chromatographic and spectral data of compound (8)	101
31.	Results of column fractionation of crystallized part of fraction VI	105
32.	Chromatographic and spectral data of compound (9)	106
33.	Chromatographic and spectral data of compound (10)	110
34.	IC ₅₀ values (µg mL ⁻¹) of the aqueous methanol leaf extract on diffe	rent
	cancer cell lines	122
35.	IC_{50} values (µg mL ⁻¹) of the isolated compounds (1,2,5,6,7,9) on H	uh-7
	cell line	122
36.	The effect of hesperidin (5) and rutin (6) isolated compounds on ma	arker
	enzyme (ALT)	128
37.	The effect of hesperidin (5) and rutin (6) isolated compounds on many	arker
	enzyme (AST)	129
38.	The effect of hesperidin (5) and rutin (6) isolated compounds on SC	D
	activity	130
39.	The effect of hesperidin (5) and rutin (6) isolated compounds on MI	DA
	content	131
40.	List of main fractions, pure phenolic compounds and the method of	their
	isolation from their fractions	133

List of abbreviations

AcOH-6% 6% acetic acid

AICI₃ Aluminium chloride

ALT Alanine transaminase

AST Aspartate aminotransferase

BAW *n*-Butanol/ acetic acid/ water

¹³C-NMR Carbon-13-Nuclear Magnetic Resonance

C₆H₆ Benzene

CC Column Chromatography

CCI₄ Carbon tetrachloride

CoPC Comparative paper chromatography

Cpd. Compound

d doublet

δ Chemical shift

dd doublet of doublet

dil. Diluted

2D-PC Two dimensional paper chrompatography

DMEM Dulbecco's Modified Eagle's Medium

DMSO-*d*₆ Deutrated Dimethylsulfoxide-*d*₆

EcTI Enterolobium contortisiliquum Trypsin Inhibitor

EDTA Ethylenediaminetetraacetic acid

ELISA Enzyme-linked immunosorbent assay

Fig. Figure

g Gram

g/L Gram / liter

GC-MS Gas Chromatography / Mass Spectrometry

¹H-NMR Proton Nuclear Magnetic Resonance

HPLC High performance liquid chromatography

Hz Hertz

IC₅₀ Inhibitory concentration by 50 %

IU/mI International unit per milliliter

J value Coupling constant

KIO₃ Potassium iodate

MDA Malondialdehyde

Mg Magnesium

mol/L Mole/ liter

NADH Nicotinamide adenine dinucleotide

NBT nitroblue tetrazolium

nm Nanometer

No. Number

OD optical density

ODS Octadecylsilanized

PC Paper Chromatography

PMs Phenazine methosulphate

PPC Preparative paper chromatography

ppm Part Per Million

s Singlet

SGOT serum glutamic oxaloacetic transaminases

SGPT serum glutamic pyruvic transaminases

sh Shoulder

SOD Superoxide dismutase assay

SRB Sulphorodamine B

TBA Thiobarbituric Acid

TBARS Thiobarbituric acid reactive substance

TFA Trifluoroacetic acid

TLC Thin Layer Chromatography

TMS Tetramethylsilane

Tris-HCI Tris (hydroxymethyl) aminomethane hydrochloride

UV Ultraviolet

xg Multiples of gravity

λ Wave length

Introduction

Natural products from plants are a rich resource used for centuries to cure various ailments. They symbolize safety in contrast to the synthetics that are regarded as unsafe to human and environment (Singab, 2012). Phenolic compounds form one of the main classes of secondary metabolites. They display a large range of structures and contribute to the nutritional qualities of fruits and vegetables. Among these compounds, flavonoids constitute one of the most ubiquitous groups of plant phenolics. Due to the variety of their pharmacological activities in the mammalian body, flavonoids are more correctly referred as "nutraceuticals". Plant polyphenols have drawn increasing attention due to their potent antioxidant properties and their marked effects in the prevention of various oxidative stress associated diseases such as cancer. In the last few years, the identification and development of phenolic compounds or extracts from different plants have become a major area of health- and medical-related research (Tapas, et al., 2008).

Family Fabaceae which is commonly known as Leguminosae, the legume family, pea family or bean family is a large and economically important family of flowering plants. The name 'Fabaceae' comes from the defunct genus *Faba*, now included into *Vicia*. Leguminosae is an older name still considered valid, and refers to the typical fruit of these plants which are called legumes. The legume family (Fabaceae) is the third largest family of flowering plants after the sunflower family (Asteraceae) and the orchid family (Orchidaceae). According to a recent account, there are approximately 19,325 species in 727 genera, although these figures can be expected to change slightly as a result of taxonomic revisions or the discovery of new taxa (Lewis *et al.*, 2005). The Leguminosae and products derived from them contribute to many areas of human activity, including medicine, agriculture, horticulture, nutrition, industry, manufacturing, and construction. Some of these applications are dependent on, or associated with the great diversity of natural products produced by this family, in which phenolics are particularly prominent (Stevens, 2008).

Enterolobium, an important genus of family Fabaceae belongs to subfamily Mimosoideae. It comprises 12 species of flowering plants native to tropical and warm-temperate regions of the Americas. They are medium-sized to large trees. Some of these Enterolobium species, including, Enterolobium timbouva are cultivated in Egypt. Since nothing could be traced in literature concerning the phenolic content of the various parts of Enterolobium timbouva and as part of an ongoing study to discover potential bioactive phenolics from terrestrial plant sources (Ayoub et al., 2009; Ayoub 2010), the present study was directed to investigate the phenolics present in the methanol soluble fraction of the aqueous extract obtained from the leaves of Enterolobium timbouva and to investigate the possible biological activities of the extract as well as its constitutive phenolics.

Aim of the work:

The work presented in this thesis is summarized into these points:

- 1. Collection, identification, authentication and drying of the plant material.
- 2. Preparation of the methanol soluble fraction of the aqueous extract of the plant leaves.
- 3. Phytochemical investigation of the methanol soluble fraction of the aqueous extract.
- 4. Chromatographic fractionation of the the methanol soluble fraction of the aqueous extract for isolation and characterization of the bioactive compounds in each fraction.
- 5. Physico-chemical identification of the different isolates using both chemical and spectroscopic methods of analysis.
- 6. Bilogical screening of the extract and correlating the activity with the isolated chemical compounds.