Role of Multislice CT in the Diagnosis and Characterization of Renal Masses

THESIS

Submitted for partial fulfillment of MD degree in Radiodiagnosis

By
Hossam El Deen Farahat Ismail Sabry
MB, B Ch, Msc Radiodiagnosis

Under supervision of

PROF.DR. MAMDOUH AHMED GHONEIM

Professor of radiodiagnosis
Faculty of medicine-Ain Shams University

PROF.DR. SAMEH MOHAMED ABDEL WAHAB

Professor of radiodiagnosis
Faculty of medicine- Ain Shams University

PROF.DR. RANIA ALY MAAROUF

Assistant professor of radiodiagnosis Faculty of medicine- Ain Shams University

Faculty of medicine Ain Shams University 2013

Acknowledgement

First and foremost, thanks to **ALLAH** the most merciful for granting me the ability to accomplish this work.

I would like to express my deepest gratitude and sincere appreciation to **Prof. Dr. Mamdouh Ghoneim**, Professor of Radiodiagnosis, Ain-Shams university for his constructive advices and valuable support.

My deep thanks go to **Prof. Dr. Sameh Abdel Wahab**, Professor of radiodiagnosis, Ain-Shams university for his sincere guidance and continuous cooperation.

Also my best thanks and appreciation are for **Prof. Dr. Rania Maarouf**,Assisstant Professor of radiodiagnosis,Ain-Shams university for her encouragement and meticulous supervision to help bring this work to reality.

Last but not least, my appreciation goes to my colleagues and professors at armed forces hospitals for their guidance and infinite help and my family for this tolerance and support.

TABLE OF CONTENTS

•	Acknowledgment
•	List of abbreviations
•	List of figures II
•	Introduction and Aim of work1
•	Review of Literature
	• Anatomy4
	• Pathology16
	• Physics of MDCT46
	• Technique55
	• Imaging of renal masses63
•	Patients and methods121
•	Results127
•	Case presentation
•	Discussion
•	Summary and Conclusion182
•	References
•	Arabic summary

LIST OF FIGURES

• Figure 1	Structure of the kidney	5
• Figure 2	Renal fetal lobation	6
• Figure 3	Anterior renal fascia	6
• Figure 4	Compound calyx of upper pole of left kidney	8
• Figure 5	Drawing illustrates normal anatomy of renal arteries	12
• Figure 6	Drawing illustrates normal anatomy of renal veins	14
• Figure 7	Picture showing gross anatomy of typical RCC	18
• Figure 8	Axial enhanced CT image of cystic RCC	20
• Figure 9	Photograph showing internal appearance of complicated	
	cystic RCC	20
• Figure 10	figure showing appearance of outer surface of cystic RCC	20
• Figure 11	Cut gross specimen of an oncocytoma	27
• Figure 12	Photomirograph of a specimen of oncocytoma	27
• Figure 13	Photograph of a gross specimen of angiomyolipoma	29
• Figure 14	Magnified photograph of specimen of Wilm's tumor	29
• Figure 15	Typical microscopic appearance of renal angiomyolipoma	33
• Figure 16	Bosniac classification of renal cysts	42
• Figure 17	Difference between single&multidetector CT scanner	48
• Figure 18	Flexible use of detectors in 4-slice MSCT scanners	49
• Figure 19	Detector arrays for various 16-slice scanner models	51
• Figure 20	64-slice scanners detector array designs used by several	
	Manufacturers	52
• Figure 21	CMP and NP	64
• Figure 22	RCC	65
• Figure 23	RCC	66

Figure 24 MIP images of a left-sided RCC	67
Figure 25 Invasive papillary urothelial carcinoma	69
Figure 26 3D VR image of normal position of the kidneys	70
Figure 27 3D VR image of an upper pole tumor	72
Figure 28 Tumor extension	72
Figure 29 Axial CT images of a RCC confined to the kidney	73
• Figure 30 Illustrative drawing & coronal CT image of a left upper pole	
Tumor	<u>75</u>
• Figure 31 Relationship of tumor to the collecting system	78
• Figure 32 Tumor supply	78
Figure 33 Multiple renal veins	79
Figure 34 RCC with enhancing retroperitoneal nodal metastases	80
Figure 35 Large RCC with possible extension into the liver	81
Figure 36 Multiple renal cell carcinomas	83
• Figure 37 Small RCC	83
Figure 38 RCC extending to the renal hilum	84
Figure 39 Renal pseudotumor	85
Figure 40 Sporadic bilateral synchronous multifocal RCC	88
Figure 41 Adrenal metastasis from RCC	89
Figure 42 RCC associated with bulky NHL	89
Figure 43 Paraaorite lymph node metastasis from undetected RCC	89
Figure 44 Spontaenous perirenal haematoma	90
Figure 45 RCC engulfing prirenal fat	91
Figure 46 Collecting duct carcinoma	94
Figure 47 Clear cell sarcoma of the kidney	95
Figure 48 Renal medullary carcinoma	96
Figure 49 Axial CT images of renal oncocytma	98

• Figure 50 Wilm's tumor	99
Figure 51 Rhabdoid tumor	101
Figure 52 Malignant rhabdoid tumors	101
• Figure 53 Nephroblastomatosis	102
Figure 54 Mesoblasticnephroma	103
Figure 55 Renal angiomyolipoma	104
Figure 56 Angiomyolipoma	106
Figure 57 Undiffrentiated renal sarcoma	107
• Figure 58 Clear cell sarcoma	107
• Figure 59 TCC	108
Figure 60 Multiple lymphomatous renal masses	110
Figure 61 Large B-cell lymphoma	111
● Figure 62 Large cell lymphoma	111
Figure 63 Dominant lymphomatous renal mass	111
● Figure 64 Renal lymphoma	112
Figure 65 Retroperitoneal mass	112
Figure 66 Diffuse lymphocytic lymphoma	113
Figure 67 Perirenal lymphoma	113
Figure 68 Coronal& axial images of perirenal lymphoma	114
Figure 69 Axial enhanced image of left renal mass	114
• Figure 70 Pyelonephritis	115

LIST OF ABBREVIATIONS

2D Two dimensional3D Three DimenshionalAML Angiomyolipoma

ADPKD Autosomal dominant polycystic

kidney disease

CMP Corticomedullary phase

CTA CT angiography
CTU CT urography
DP Delayed phase
EP Excretory phase
EU Excretory urography
HU Hounsfield unit

IVC Inferior vena cava

IVP Intra venous pyelographyIVU Intra venous urography

LN (s) Lymph node (s)

MDCT Multi detector row CT

MIP Maximum intensity projection

MPR Multiplanar reformat

MR/MRI Magnetic resonance imaging

MSCT Multislice CT

NP Nephrographic phase

PACS Picture archiving and communication

System

RCC (s) Renal cell carcinoma (s)

ROI Region of interest

RV Renal vein

SSD Surface shaded display STD Standard deviation

TCC Transitional cell carcinoma

US Ultrasound

XGP Xanthogranulomatous Pyelonephritis

UPJ Ureteropelvic junction VR volume rendering

INTRODUCTION

The great majority of renal masses are found incidentally as a result of the use of computed tomography, ultrasonography, and magnetic resonance imaging. Fortunately, most of these are simple renal cysts that can be easily diagnosed and do not require treatment. However, solid and complex cystic renal masses are also discovered, many of which are clearly malignant and need to be surgically removed, while others may not require surgical intervention. Therefore, the proper characterization of these masses is essential so that appropriate management is instituted (Israel and Bosniak, 2005).

For many years, spiral computed tomography (CT) represented themodality of choice for assessment of tumor extension due to its highaccuracy. The evolution of CT technology and the introduction of multidetector computed tomography (MDCT) have provided higherspatial resolution and faster acquisition. Three-dimensional reformattingtechniques enable easy performance of multiplanar reconstructions, which improves the staging capabilities for RCC. Tumor stage is themost important factor affecting the prognosis and survival of patients, and has an important bearing on planning treatment(Türkvatan et al, 2009).

Multidetector—(also known as multislice, multichannel, or multisection) — CT (MDCT) is the most recent advance in CT technology. It uses a multiple row detector array instead of the single-row detector array used in helical CT. These new CT scanners allow 2 to 25 times faster scan times than helical CT with the same or better image quality. These faster scan times result in decreased breath-hold times with reduced motion artifact and better diagnostic images. Increased

Introduction & Aim of work

volume coverage is combined with thinner slice thickness to obtain better quality volume data sets for workstation analysis, either in 2-D axial, multiplanar reformation (MPR), or three-dimensional (3-D) imaging. The main advantages of MDCT are faster scanning time, increased volume coverage, and improved spatial and temporal resolution (Napoli et al, 2004).

Moreover, by using MDCT, different image thickness can be obtained from the same acquisition data set. MDCT allows images to be obtained in multiple phases of renal parenchymal enhancement and excretion in the collecting system after administration of a single bolus of intravenous (IV) contrast material. Therefore, detection and characterization of small renal masses, display of the arterial and venous supply of the kidney similar to conventional angiography, and demonstration of the collecting system's abnormalities using different 3-D display techniques are possible with MDCT (Kocakoc et al, 2005).

The most common nonemergent indication for renal CT involves evaluation or staging of a renal mass. The mass may besymptomatic or one of the increasing number ofincidental findings detected as more CTs are beingperformed. Multiphase imaging in a patient with renalmass can serve one of two broad purposes: characterization of the renal lesion, or staging and detection of metastatic disease (Lockhart and Smith, 2003).

Renal masses frequently manifest with hematuria. Characterization of a renal mass as a simple cyst, a complex cyst, or a solid mass is essential. Simple cysts are benign and do not warrant further evaluation. Solid masses, with the exception of angiomyolipomas, are presumed to be malignant and usually require surgery (Joffe et al, 2003).

Introduction & Aim of work

Renal cell carcinoma is the most common primary tumor of thekidneyaccounting for 85–90% of all malignant renal tumors in adults. With the widespread use of cross-sectionalimaging, many tumors are discovered incidentally and most of them are small, early-stage lesions (**Sheth et al, 2001**) (**Catalano et al, 2003**).

The accurate diagnosis of a renal mass is dependent on many factors, a high-quality imaging examination, which is under the control of the radiologist, is essential (Israel and Bosniak, 2005).

Aim of work

The aim of this work is the assessment and highlighting of the role of multislice CT in the diagnosis and characterization of different renal masses.