BIOCHEMICAL AND MOLECULAR GENETIC STUDIES ON WHEAT RESISTANCE TO LEAF RUST

BY ESSAM AHMAD HASSAN MOSTAFA

B.Sc. Agric. Sc. (Horticulture), Cairo University, 1991M.Sc. Agric. Sc. (Botany), Cairo University, 1999

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Science (Genetics)

Department of Genetics Faculty of Agriculture -Ain Shams University

2006

Approval Sheet

BIOCHEMICAL AND MOLECULAR GENETIC STUDIES ON WHEAT RESISTANCE TO LEAF RUST

BY ESSAM AHMAD HASSAN MOSTAFA

B.Sc. Agric. Sc. (Horticulture), Cairo University, 1991 M.Sc. Agric. Sc. (Botany), Cairo University, 1999

This thesis for Ph.D. degree has been approved by:

Prof. Dr. Mahmoud Imam Nasr Prof. Emeritus of Genetics, Institute of Genetics Engineering and Biotechnology, El-Menoufia University
Prof. Dr. Alia Ahmed Mohamed El-Seoudy Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University
Prof. Dr. Fotouh Mohamed A. El-Domyati Prof. of Genetics, Faculty of Agriculture, Ain Shams University
Prof. Dr. Sayed Hassan Hassanien Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams

Date of Examination 6/9/2006

University

BIOCHEMICAL AND MOLECULAR GENETIC STUDIES ON WHEAT RESISTANCE TO LEAF RUST

BY ESSAM AHMAD HASSAN MOSTAFA

B.Sc. Agric. Sc. (Horticulture), Cairo University, 1991 M.Sc. Agric. Sc. (Botany), Cairo University, 1999

Under the supervision of:

Prof. Dr. Sayed Hassan Hassanien

Prof. Emeritus of Genetics, Dept. of Genetics, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Fotouh Mohamed A. El-Domyati

 $\mbox{Prof.}$ of Genetics, Dept. of Genetics, Faculty of Agriculture , Ain Shams University

Prof. Dr. Ibrahiem Mostafa Mahmoud

Prof. Emeritus of Genetics, Statistics and Plant Breeding, Dept. of Genetics & Cytology, Division of Genetics Engineering & Biotechnology, National Research Centre.

ABSTRACT

Essam Ahmad Hassan Mostafa. Biochemical and Molecular Genetic Studies on Wheat Resistance to Leaf Rust. Unpublished Doctor of Philosophy Dissertation. Ain Shams University, Faculty of Agriculture, Department of Genetics, 2006.

Diallel cross was made between five wheat varieties (Sakh61, Saka69, Giza164, Sids1 and Chinese spring (C.S)). Parents, F1's and F2's crosses were open field evaluated in split plot design with three blocks. The plants were infected in adult stage with leaf rust in the open field and greenhouse. Three characters, plant height, number of spikes per plants and grain weight per plant, exhibited highly significant differences between entries. Highly significant differences were noted between the genotypes with respect to all studied traits. Both general and specific combining ability variances were found to be significant for spike length, grain weight per spike and grain weight per plant for control and infected plants and their combined data. GCA/SCA ratios were found to be greater than unity for all studied traits except for number of spikelets per spike at the control and combined data. With respect to rust disease measurements, all measurements showed significant values in F1 and F2 generations. Highly significant differences were found among parents and among hybrids for these five studied measurements. The three parental varieties Sakha 69, Giza 164 and Sids 1 showed highly significant negative GCA effects for all measurements. SCA effects were also highly significant in all characters in all crosses, except receptivity in cross P₂ X P₄. The SDS-PAGE of water soluble proteins in three parents (Sakha 69, Sids1 and C.S) and two F1's (Sakha69 x Sids1 and C.S x Sids1) under control and infection conditions, showed one band with M.W of 59 kDa which may be used for distinguish between resistant and susceptible wheat genotypes. F2 plants from C.S x Sids1 cross showed 16 bands, two of which with M.W (59 and 7 kDa) may be considered as positive markers for resistant wheat genotypes. Peroxidase isozyme of F2 plants from cross C.S x Sids1 revealed one band (R.F: 0.09) which is present in resistant group and absent in susceptible one. Cross C.S x Sids1 showed two DNA-RAPD markers resulted from primer OP-B08 related with leaf rust resistance in wheat, whereas cross Sakha69 x Sids1 revealed one marker resulted from each of primer OP-B05 and OP-B14

Key words: Wheat, Leaf rust, Combining ability, SDS-PAGE, RAPD-PCR markers

ACKNOWLEDGEMENT

First and foremost, I'm indebted to ALLAH forever, the most beneficent and merciful.

I wish to express my deepest gratitude and appreciation to **Prof. Dr. S.H. Hassanien,** Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University, for his valuable advice, helpful criticism and fruitful suggestions throughout the progress of study and during preparation of the manuscript.

I would like to express my deepest thankfulness to **Prof. Dr. F.M. A. El-Domyati** Professor of genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University for his helpful criticism and his advice during this study.

I would also like to express my gratitude and heartfelt thanks to **Prof. Dr. I. M. Mahmoud,** Prof. Emeritus of Plant Breeding, Department of Genetics and Cytology, Division of Genetic Engineering and Biotechnology, National Research Centre, for his help to solve problems and his encouragement throughout this study.

Thanks to all staff members of Department of Genetics, Faculty of Agriculture, Ain Shams University, for their sincere help and advice during the progress of this work.

All thanks are also due to Colleagues of Genetics and Cytology Department, Division of Genetic Engineering and Biotechnology, National Research Centre.

I express my sincere love for my family, my wife and my son, for their patience and encouragement.

CONTENTS

			Page
	LIST	Of TABLES	iii
	LIST	Of F[GURES	vii
Ι	INTR	ODUCTION	1
II	REVI	EW OF LITRATURE	3
	1 Con	nbining ability, heterosis and type of gene action	3
	1.a	Yield and yield components.	3
	1.b	leaf rust resistance	9
	2 Biod	chemical and molecular marker	14
III	MATI	ERIALS AND METHODS	26
	1 Mat	erials	26
	2 Met	hods	28
	2.1	Statistical Analysis	28
		2.1.a Mean performance	29
		2.1.b Heterosis	29
		2.1.c Estimation of Combining Ability Effects	30
		2.1.d Estimation of Genetic Behavior (mode of gene action)	33
		2.1.d 1 Estimation of genetic variance components	33
		2.1.d 2 Estimation of genetic ratios	34
	2.2	Biochemical genetic studies	35
		2.2.1 SDS-protein electrophoresis	35
		2.2.2 Isozymes electrophoresis	39
		2.2.3 RAPD-PCR technique	42
IV	RESU	LTS AND DISCUSSION	47
	a Yi	eld and yield components, Selection Index and Heterosis	47
	a.1	Yield and yield components	47
	a.2	Selection Index	48
	a.3	Heterosis	53

VII	Arabic summary			
VI	Re	feren	ces	148
\mathbf{V}	Summary		144	
		d. 4	The importance of molecular markers in breeding	140
		d. 3	RAPD-PCR markers	129
		d. 2	Isozymes markers	121
		d. 1	SDS- protein markers	115
	d	Mol	ecular studies:	115
		c. 3	Genetic components of variance	110
		c. 2	Combining ability analysis	104
		c. 1	Rust disease measurements, Selection index and Heterosis	98
	c	Inhe	ritance of rust symptoms measurements	98
		b.2	Mode of gene action	87
		b.1	Combining ability analysis	62
	b	Con	abining ability and Mode of gene actions	62

LIST OF TABLES

Table		Page
1	Split plots analysis for 7 studied characters in F1 generation	49
2	split plots analysis for 7 studied characters in F2 generation	49
3	Total means performance of uninfected plants and infected ones for	50
	7 studied traits in F1 generation.	
4	Total means performance of uninfected plants and infected ones for	50
	7 studied traits in F2generation.	
5	Selection index ranking of studied traits, simultaneously for entries	51
	in F ₁ diallel cross of control treatment	
6	Selection index ranking of studied traits, simultaneously for entries	52
	in F ₁ diallel cross under infection treatment	
7	Selection index ranking of studied traits, simultaneously for entries	57
	in F ₂ diallel cross of control treatment	
8	Selection index ranking of studied traits, simultaneously for entries	58
	in F ₂ diallel cross of infection treatment	
9	Percentage of heterosis over mid and better parent for all studied	59
	traits in the F1 generation	
9	Cont.	60
9	Cont.	61
10	Mean squares of general and specific combining abilities from	64
	diallel cross (Parents and F1) analysis for all traits	
10	Cont.	65
11	Mean squares of general and specific combining abilities from	71
	diallel crosses (Parents and F2) analysis for all traits	
11	Cont.	72
12	Estimates of general combining ability effects for studied parents in	73
	F1 for all traits	
12	Cont.	74
13	Estimates of general combining ability effects for studied parents in	75
	F2 for all traits	

13	Cont.	76
14	Estimates of specific combining ability effects for F1 crosses	81
14	Cont	82
14	Cont	83
15	Estimates of specific combining ability effects for F2 crosses	84
15	Cont	85
15	Cont	86
16	Estimates of genetic components of variation in diallel crosses	90
	(Parents and F_1) for all traits	
16	Cont	91
16	Cont	92
17	Estimates of genetic components of variation in diallel crosses	95
	(Parents and F ₂) for all traits	
17	Cont	96
17	Cont	97
18	Mean square estimates of ordinary analysis for rust disease	101
	measurements in parents and F1's crosses.	
19	Mean square estimates of ordinary analysis for rust disease	101
	measurements in parents and F2's crosses	
20	Selection index ranking of studied disease measurements,	102
	simultaneously for entries in F1 diallel cross	
21	Selection index ranking of studied disease measurements,	102
	simultaneously for entries in F1 diallel cross	
22	Percentage of heterosis over mid and better parent for all studied	103
	disease measurements in the F1 generation	
23	Observed mean squares from general and specific abilities from	107
	diallel cross (Parents and F1) analysis for all traits	
24	Observed mean squares from general and specific abilities from	107
	diallel cross (Parents and F2) analysis for all traits	
25	Estimates of general combining ability effects for parents studied in	108
	F1 for all disease measurements	

26	Estimates of general combining ability effects for parents studied in	108
	F2 for all disease measurements	
27	Estimates of specific combining ability effects for F1 crosses	109
28	Estimates of specific combining ability effects for F2 crosses	109
29	Estimates of genetic components of variation in diallel crosses	113
	(Parents and F ₁) for all traits	
30	Estimates of genetic components of variation in diallel crosses	114
	(Parents and F ₂) for all traits	
31	Densitometric profile for water-soluble protein profiles of the	118
	susceptible parent (Chinese spring (P ₅)), the moderately susceptible	
	parents (Sakha 69 (P2) & Sids1 (P4)), Chinese spring x Sids1 and	
	Sakha 69 x Sids1 crosses under control and infection.	
32	Densitometric profile for water-soluble protein profiles of the F2	119
	susceptible and resistant groups of Sakha 69 x Sids1 cross under	
	infection with leaf rust disease	
33	Densitometric profile for water-soluble protein profiles of the F2	120
	susceptible and resistant groups of Chinese spring x Sids1 under	
	infection with leaf rust disease	
34	The presence of peroxidase isozymes bands in parents and F1's	122
	crosses under control and infection condition.	
35	The presence of peroxidase isozymes bands in F2 plants of Sids1 x	123
	Sakha 69 cross.	
36	The presence of peroxidase isozymes bands in F2 plants of Sids1 x	124
	Chinese spring cross	
37	The presence of esterase isozymes bands in parents and F1's under	126
	control and infection condition.	
38	The presence of esterase isozymes bands in F2 plants of Sids1 x	127
	Sakha 69 cross.	
39	The presence of esterase isozymes bands in F2 plants of Sids1 x	128
	Chinese spring cross	
40	The densitometric analysis of RAPD-PCR products of hybrid (Sids1	131

	x Chinese spring) against primer OP-B05	
41	The densitometric analysis of RAPD-PCR products of hybrid (Sids1	132
	x Chinese spring) against primer OP-B08	
42	The densitometric analysis of RAPD-PCR products of hybrid (Sids1	133
	x Chinese spring) against primer OP-B11	
43	The densitometric analysis of RAPD-PCR products of hybrid (Sids1	134
	x Chinese spring) against primer OP-B14	
44	The densitometric analysis of RAPD-PCR products of hybrid (Sids1	136
	x Sakha 69) against primer OP-B05	
45	The densitometric analysis of RAPD-PCR products of hybrid (Sids1	137
	x Sakha 69) against primer OP-B08	
46	The densitometric analysis of RAPD-PCR products of hybrid (Sids1	138
	x Sakha 69) against primer OP-B11	
47	The densitometric analysis of RAPD-PCR products of hybrid (Sids1	139
	x Sakha 69) against primer OP-B14	

LIST OF FIGURES

Figure		Page
1	SDS-PAGE of wheat leaf protein (water-soluble protein) of 1:the	118
	susceptible parent (Chinese spring), 2: the moderately susceptible	
	parents Sakha 69, 3: the moderately susceptible parents Sids 1, 4:	
	F1 cross Chinese spring x Sids 1 and 5: cross Sakha 69 x Sids 1	
	under control and infection	
2	SDS-PAGE of wheat leaf protein (water-soluble protein) of the F2	119
	susceptible and resistant groups of Sakha 69 x Sids1 cross under	
	infection with leaf rust disease.	
3	SDS-PAGE of wheat leaf protein (water-soluble protein) of the F2	120
	susceptible and resistant groups of Chinese spring x Sids1 under	
	infection with leaf rust disease	
4	Electrophoretic patterns of peroxidase Isozymes for wheat	122
	genotypes: 1: susceptible parent (Chinese spring), 2: moderately	
	susceptible parent (Sakha 61), 3: moderately susceptible parent	
	(Sids 1), and the two F1 hybrids 4: Sakha 61 x Sids 1 , 5: Sids 1 x	
	Chinese spring) under control and infection condition	
5	Electrophoretic patterns of peroxidase isozyme for the resistant	123
	group (1:5) and the susceptible group (6:10) of cross Sakha 61 $\rm X$	
	Sids1 under infection with leaf rust disease.	
6	Electrophoretic patterns of peroxidase isozyme for the resistant	124
	group (1:5) and the susceptible group (6:10) of cross Chinese spring	
	X Sids1 under infection with leaf rust disease	
7	Electrophoretic patterns of esterase isozymes for: 1: susceptible	126
	parent (Chinese spring), 2: moderately susceptible parent (Sakha	
	61), 3: moderately susceptible parent (Sids 1), and the two F1	
	hybrids 4: Sakha 61 x Sids 1, 5 : Sids 1 x Chinese spring) under	
	control and infection condition.	
8	Electrophoretic patterns of esterase isozyme for the F2 resistant	127
	group (1:5) and the susceptible group (6:10) of cross Sakha 61 x	

	Sids1 under infection with leaf rust disease.	
9	Electrophoretic patterns of peroxidase isozyme for the F2 resistant	128
	group (1:5) and the susceptible group (6:10) of cross Chinese spring	
	X Sids1 under infection with leaf rust disease	
10	RAPD-PCR products of hybrid (Sids1 x Chinese spring) against	131
	primer OP-B05	
11	RAPD-PCR products of hybrid (Sids1 x Chinese spring) against	132
	primer OP-B08	
12	RAPD-PCR products of hybrid (Sids1 x Chinese spring) against	133
	primer OP-B11	
13	RAPD-PCR products of hybrid (Sids1 x Chinese spring) against	134
	primer OP-B14	
14	RAPD-PCR products of hybrid (Sids1 x Sakha 69) against primer	136
	OP-B05	
15	RAPD-PCR products of hybrid (Sids1 x Sakha 69) against primer	137
	OP-B08	
16	RAPD-PCR products of hybrid (Sids1 x Sakha 69) against primer	138
	OP-B11	
17	RAPD-PCR products of hybrid (Sids1 x Sakha 69) against primer	139
	OP-B14	

I. Introduction

Wheat (*Triticum aestivum* L.) is one of the major cereal crops grown in Egypt. It is a stable food for the Egyptians; therefore, it is grown on 2.5 million feddans in different agroecological regions to meet the ever increasing domestic requirements. (**Abdel-Sattar** *et al* (2005))

Leaf rust of wheat caused by the fungus *puccinia* is one of the most destructive and widely distributed diseases in diverse wheat growing area of the world. Losses caused by this disease can be quite high under favorable conditions. **Nazim** *et al* (1996) and **Mousa** (2001) demonstrated that under the favorable environmental conditions, leaf rust prevailing in the Delta region causes considerable losses in grain yield production of most wheat cultivars. The susceptible varieties cause yield loss up to 5-15% or grater depending on the stage of the crop when the initial rust infection occurs (**Kolmer**, 1996)

Many investigators confirmed that plant reaction for leaf rust is controlled by one, two or a few number of major genes. However, recently several studies indicated that it's a quantitative character controlled by many genes (Milus and line 1987, Griffey and Allan, 1988, Kolmer 1996, Shehab El-Din and Abdel-Latif, 1996 and Boulot and El-Sayed 2001).

Genetic resistance is the most economical method of reducing yield losses, caused by wheat leaf rust (*Puccinia recondita*). The identification and knowledge of the leaf rust resistance genes, in commonly used parental germplasm and released cultivars, became very important for utilizing the genetic resistance to wheat leaf rust fully. To date, approximately 90 leaf rust resistant genes have been found, 51 of which have been located and mapped to specific chromosomes, and 56 have been officially designated according to the standards set forth in the Catalogue of Gene Symbols for wheat. Twenty four wheat leaf rust resistance genes have been developed for molecular

markers. It is very important to continuously isolate, characterize and map leaf rust resistance genes due to the resistance losses of the genes caused by the pathogen. Yang and Liu (2004)

Plant breeders require more information regarding to genetic components of leaf rust in order to breed new disease resistant cultivars to replace these that succumb to diseases.

This study was undertaken to identify some biochemical and molecular markers concerning leaf rust disease that will be of considerable value in breeding programmes for rust resistance. To achieve this principle goal, detailed studies concerning plant genotypes will be carried out. Helpful genetic studies on plant materials need designing proper field and greenhouse experiments to determine the suitable plant materials that will be used in molecular studies. These assisted experiments include:

- 1. Studying the inheritance of leaf rust resistance in some bread wheat cultivars regarding to combining ability, heterosis and mode of gene action.
- 2. Identifying and selecting the most resistant genotypes according to yield potential and degree of infection type.