Evaluation of the Role of Laparoscopy in Management of Pelvic Floor Dysfunction Associated with Obstructed Defaecation Syndrome

Thesis Submitted for the partial fulfillment of M.D. Degree in General & Colorectal Surgery

By

Mohamed Abdel-Hamid Mohamed Rabie

MB.BCh, MS General Surgery Ain Shams University

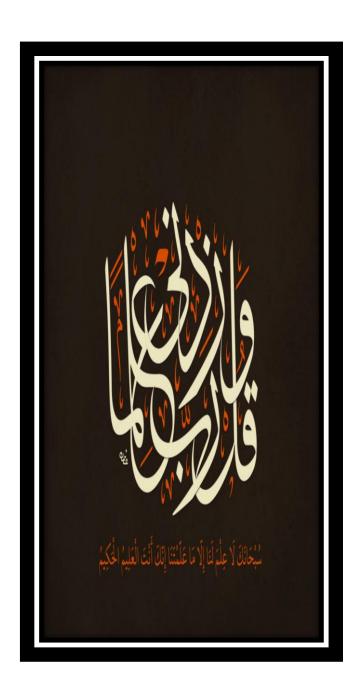
Supervised by

Prof. Dr. Amr Abdel Monem Sherif

Professor of General Surgery
Faculty of Medicine - Ain Shams University

Prof. Dr. Ahmed Abdel Aziz Abou-Zeid

Professor of General Surgery Faculty of Medicine - Ain Shams University


Prof. Dr. Deya Marzouk

Professor of General Surgery East Kent University hospitals

Dr. Hanna Habib Hanna

Lecturer of General Surgery Faculty of Medicine -Ain Shams University

> Faculty of Medicine Ain Shams University 2013

First and last, thanks to **ALLAH**

This work has only been possible as a result of the help I have received from so many people.

I would like to thank Professor Deya Marzouk who gave me the privilege of working with him in the United Kingdom and taught me a lot not only in surgery, but also in ways of scientific research and ethics of medical practice. I would like to express my deepest gratitude and respect for his valuable advice, support and time that he gave me during this work.

Also my deepest gratitude is to Professor Amr Abdel Monem Sherif and Professor Ahmad Abdelaziz Abou-Zeid. Without their support and guidance, I would not have started this journey and words are not enough to express my appreciations.

I would like also to thank Doctor Mark Scott from the Royal London Hospital for his support and advice with regard to the anorectal physiology results and his kind invitation to visit the GI Physiology Unit at the Royal London Hospital.

Words are not enough to express how I thank my father, my mother, my wife and my son for their great patience and support for me to complete this work.

To My Father and My Mother

To My Wife & My Son

Mohamed Rabie

LIST OF CONTENTS

Title	Page No.	
INTRODUCTION	1	
AIM OF THE WORK 3		
REVIEW OF LITERATURE		
PHYSIOLOGY OF NORMAL DEFAECATION	4	
CONSTIPATION	7	
OBSTRUCTED DEFAECATION SYNDROME (OD	S)14	
ANATOMICAL ABNORMALITIES IN ODS	27	
PHYSIOLOGICAL ABNORMALITIES IN ODS	57	
INVESTIGATIONS FOR ODS	63	
MANAGEMENT OF ODS:	91	
PATIENTS AND METHODS	162	
RESULTS	176	
DISCUSSION	208	
SUMMARY	243	
REFERENCES	248	

LIST OF TABLES

Tab. No. Title Page Table 1: Rome III diagnostic criteria for functional constipation	No.
Table 1: Rome III diagnostic criteria for functional constipation	7
Table 2: Causes of constipation [19]	9
Table 3: Mechanisms of ODS and associated disorders	15
Table 4: Longo's obstructed defecation syndrome (ODS) scoring system	18
Table 5: Altomare ODS Score ^[35]	19
Table 6: Classification of rectoceles ^[83]	43
Table 7: Sigmoidocoele classification	47
Table 8: Disorders affecting different divisions of the female pelvis [83]	53
Table 9: Comparison of different radiopaque marker methods	74
Table 10: Grading of MR Imaging Findings	80
Table 11: MRI grading of ODS	81
Table 12: Main classes of drugs responsible for secondary constipation	91
Table 13: Biofeedback for Constipation	99
Table 14: Results of the Intra-anal Delorme Procedure for ODS	108
Table 15: Functional results of STARR procedure [288]	114
Table 16: Results of the Ripstein Procedure for Rectal Prolapse ^[316]	121
Table 17: Results of Posterior Mesh Rectopexy for Rectal Prolapse [316]	124
Table 18: Results of Suture Rectopexy for External & Internal Rectal Prolapse	130
Table 19: Ventral Rectopexy for ODS	135
Table 20: Results of resection rectopexy for patients with rectal prolapse	142
Table 21: Resection Rectopexy for ODS	147
Table 22: Effect of Preservation of Ligaments on Outcome	151
Table 23: Effect of Division of Ligaments on Outcome	153
Table 24: Normal ranges for anorectal physiology	169
Table 25: Modified ODS Score	173
Table 26: Anatomical findings on clinical examination	178
Table 27: Significant findings in clinical examination	178
Table 28: Types of operations for ODS 2005-2012	196
Table 29: Post-operative complications	198
Table 30 pre and post-operative symptoms	200
Table 31: Pre and post-operative ODS scores	202

LIST OF FIGURES

		Page No.
Figure	e 1: The mechanism of maintaining continence and defecation	5
Figure	e 2: Normal Defaecation	6
Figure	e 3: Abnormal Defaecation	6
Figure	e 4: Bristol Stool Scale	20
	e 5: The hook manoeuvre 'low type' of prolapse	
	e 6: The hook manoeuvre 'low type' of prolapse	
	e 7: The hook manoeuvre 'high-type' internal rectal prolapse	
	e 8: Internal rectal prolapse as observed through a flexible sigmoidosco	
	e 9: Internal rectal prolapse	
	e 10: Internal rectal intussusception.	
Figure	e 11: lateral proctography showing low-grade intussusception	30
Figure	e 12: Lateral proctography showing high-grade intussus-ception	30
Figure	e 13: Grades of IRI	31
Figure	e 14: Intrarectal intussusception	33
Figure	e 15: Intra-anal intussusception	34
Figure	e 16: Rectal prolapse	34
Figure	e 17: Thin rectal mucosal folds	35
Figure	e 18: Mucosal folding	35
Figure	e 19: Intrarectal intussusception	35
	20: lateral proctography low-grade intussusception	
	e 21: Differential diagnosis of rectal prolapse	
Figure	e 22 Proctography during evacuation reveals a large anterior rectocoele	· 41
Figure	e 23 (a) Lateral radiograph shows a large anterior rectocele (b) Lateral	radiograph
	obtained shows a stage 2 enterocele	
Figure	e 24: Sigmoidocele classification	47
Figure	e 25: Second-degree sigmoidocele	48
	26: Enterocele and sigmoidocoele	
Figure	e 27: Sigmoidocoele	50
Figure	28: Intravaginalenterocoele and competing cystocoele	52
	e 29: Pelvic floor descent	
Figure	e 30: Rectal intussusception and solitary rectal ulcer syndrome	56
Figure	e 31: Proctographic features of the anismus	60
Figure	e 32: Paradoxical puborectalis contraction	60
Figure	e 33: Evacuation proctography reveals a large rectocele, pelvic floor de	escent and
	ballooning, and enterocele	62
Figure	e 34: Defaecography table	64
	e 35: Mixture of Barium Sulphate and Porridge for preparation of Neo-	
Figure	e 36: Defaecography showing the normal resting rectal configuration	68
Figure	e 37 a-c: Normal evacuating proctogram	70
Figure	e 38: Colonic transit-time markers	71
Figure	e 39: Colonic transit-time study showing normal elimination	73
	e 40: Segmental colonic transit	
	e 41: Total Colonic inertia	
Figure	e 42: Colonic transit-time study showing retention of markers in the re-	ctosigmoid
	colon	
Figure	e 43: open-configuration MR system used for dynamic pelvic examina	tions 78

LIST OF FIGURES (cont.)

Fig. No.	itle Page No.
Figure 44 a,b: Midsagittal MR Images (a) A	partly stool-filled small anterior rectocele.
	derate hernia of the sigmoid colon 82
Figure 45 a,b: Midsagittal MR images (a) A	moderately sized anterior rectocele. (b)
Intussusception	82
Figure 46 a, b: The eight radial catheter char	nnels83
Figure 47: The St Mark's pudendal electrode	e for measuring PNMTL86
Figure 48: Transanal ultrasonography	88
Figure 49: Peristeen anal irrigation	94
Figure 50: Peristeen® anal irrigation system	94
Figure 51 Sacral nerve stimulation	
Figure 52: Intra-anal Delorme procedure	
Figure 53: Perineal and Endorectal Repair of	f Rectocele by Circular Stapler109
Figure 54: Stapled transanal rectal resection	(STARR) procedure 110
Figure 55 a-f: STARR procedure using the 7	
Figure 56-60: Pemberton and Stalker rectope	exy119
Figure 61: Mesh rectopexy (Ripstein)	
Figure 62: A: Sketch of Ivalon sponge attach	ned by its free margins to the hollow of the
sacrum to form a tunnel. B: Sket	ch of Ivalon sponge attached to the hollow
Figure 63: Ivalon (polyvinyl alcohol) sponge	1 • · ·
Figure 64: Stitches placed onto the sacral pro	
Figure 65: Schematic representation of Silvi	
Figure 66: The ventral position of the mesh	
Figure 67-72: Laparoscopic ventral rectopex	
Figure 73-74: Frykman Resection Rectopex	
Figure 75-84: Laparoscopic resection rectopexy technique	
Figure 85: Obstructed Defaecation web site	
Figure 86: Preoperative symptoms (%)	
Figure 87: Comparison of ODS score in each	
Figure 88: Distribution of subtypes of IRI	
Figure 89: First Constant Rectal Sensation in	
Figure 90: Defaecatory Desire Volume in O	
Figure 91: Maximum Tolerable Volume in C	
Figure 92: Values of rectal volumes in ODS	
Figure 93 : Relationship between Rectal sen	
Figure 94: Relationship between rectal sensa	
Figure 95: PNTML Results	
Figure 96: Anal sphincter morphology	
Figure 97: Medians of MRP according to an	
Figure 98: Medians of MSI according to ana	
Figure 99: FACL in ODS patients	
Figure 100: Correlation between MRP and F	
Figure 101: MRP (Mean, SD) according to I	
Figure 102: Maximum resting pressure in O	
Figure 103:Maximum Squeeze Increment in	
Figure 104: MRP in patients with and without	
Figure 105: MSI in patients with and without	t post-defaecation leakage190

LIST OF FIGURES (cont.)

Fig.	No.	Title	Page No.
Figure	106:	Relation between sphincter morphology and post-defaecation le	eakage 190
Figure	107:	Anatomical abnormalities in patients with delayed rectal evacuation	ation 191
Figure	108:	Anatomical abnormalities and rectal evacuation	191
Figure	109:	correlation between rectal evacuation and ODS score	192
		Anatomical findings in Defaecography	
Figure	111:	Number of anatomical abnormalities and ODS score	194
Figure	112:	Degree of IRI and ODS score	194
Figure	113:	Segmental classification of CST	195
Figure	114:	Colonic Transit	195
Figure	115:	Types of Abdominal Operations for ODS	196
Figure	116:	Extent of Bowel Resection	197
Figure	117:	Plot box shoeing Pre and post-operative ODS score	201
Figure	118:	Changes in ODS score	201
Figure	119:	Pre and Postoperative straining at defaecation	202
Figure	120:	Pre and postoperative time taken to defaecate	203
Figure	121:	Pre and postoperative feeling of incomplete evacuation	204
Figure	122:	pre and postoperative rectal evacuation score	204
Figure	123:	Pre and postoperative daily attempts to defaecate score	205
Figure	124:	pre and postoperative laxative requirement score	206
Figure	125:	pre and postoperative QOL	206
Figure	126:	Pre and postoperative abdominal pain and bloating	207
Figure	127:	Sparing superior rectal artery	239

LIST OF ABBREVIATIONS

Abbreviation	Complete term
ARA	Anorectal Angle
BET	Balloon Expulsion Test
CCCS	Cleveland Clinic Constipation Score
CCIS	Cleveland Clinic Incontinence Score
DDV	Defaecatory desire volume
ERP	External Rectal Prolapse
FACL	functional anal canal length
FCS	First constant sensation
IRI	Internal Rectal Intussusception
LRR	Laparoscopic resection rectopexy
MRI	Magnetic Resonance Image
MTV	Maximum tolerable volume
ODS	Obstructed defaecation syndrome
PAC-QoL	Patient Assessment of Constipation Quality of Life
PNTML	Pudendal nerve terminal motor latencies
PRL	Puborectalis length
PSC	Paradoxical sphincter contraction
SRUS	Solitary Rectal Ulcer Syndrome
STARR	Stapled Transanal rectal resection
STC	Slow Transit Constipation

INTRODUCTION

bstructed defaecation syndrome (ODS) is one of the most difficult conditions to understand & treat. It is often associated with pelvic floor dysfunction, whether anatomical [e.g. intussusception] or functional [e.g. anismus]. patients with slow transit further association in some complicates the situation and patients may paradoxically complain of difficulty in evacuation and leakage. A great deal of controversy still exist with respect to what does the term obstructed defaecation means, how prevalent it is in the community [as a subset of "constipation"] and the relative importance of the various abnormalities found in such patients. include pelvic floor dysynergia, internal intussusception, rectocoele, sigmoidocoele, enterocoele & abnormal uterine descent as well as the contribution of other conditions such as pelvic adhesions following pelvic surgery.

The advent of anorectal physiology testing played an important role in advancing our understanding of the subject. More recently MRI proctography further enhanced our understanding of ODS. Surgical treatment of obstructed defaecation is still, however, experimental in a way. There is a great deal of disagreement among coloproctologists regarding the merits of various approaches. Our experience in treating these patients with laparoscopic techniques has further expanded our knowledge of the complex nature of this disorder at the same

Introduction

time it afforded the convenience of keyhole approach to patients.

This study aims to evaluate the results of laparoscopic resection rectopexy (LRR) for ODS patients.

AIM OF THE WORK

The aim of the present thesis is to evaluate the role of laparoscopic resection rectopexy in the management of patients suffering from obstructed defaecation syndrome secondary to "anatomic" pelvic floor abnormalities.

Chapter 1 **Physiology of Normal Defaecation**

efaecation is the physiological process by which the body expels unwanted food residue. Defaecation is a complex neuromuscular process where a multitude of sensory and motor inputs interact with pelvic floor mechanics and colon and rectal motility to expel faeces. Small bowel contents enter the large bowel through the ileocaecal valve. The large bowel function is to mix and propel faecal matter and to absorb water and electrolytes. Colonic motility is mediated by a combination of extrinsic and intrinsic nervous stimuli. The extrinsic innervation is made up of sympathetic and parasympathetic nerves. The intrinsic innervation is made up of the enteric nervous system, which is a network of nerve cells in the bowel wall comprising the myenteric and submucosal plexuses^[1]. Colonic motility follows three different patterns; segmentation contractions which mix contents, anti-peristaltic contractions, which retard progress of faecal contents and mass colonic movements which occurs once or twice per day to move most contents towards the rectum to start the process of defaecation.

The rectum maintains low intraluminal pressure and accommodates slowly (rectal compliance) to faecal contents. Once a certain volume is reached (usually 200ml), a sensation of rectal fullness occurs, which is mediated by sensory stretch receptors in the puborectalis and levator ani. These sensations are relayed to the pontine defaecation centre. The rectosphincteric inhibitory reflex (Rectoanal inhibitory reflex)^[2] is

activated, causing relaxation of the internal anal sphincter. The faecal bolus descends towards the anal canal, but is prevented from progressing further by the voluntary contraction of the external sphincter^[3]. At this point, sensory sampling by the profuse sensory receptors of the upper anal canal in the anal transition zone permits the individual to distinguish between flatus, liquid, or solid^[4]. When socially convenient, the external sphincter and puborectalis are relaxed and combined with straining; the anorectal angle straightens, allowing the rectal contents to be expelled. If the timing is inconvenient, the external sphincter and puborectalis remain contracted, returning the luminal contents back to the rectum, and the contents are then re-accommodated in the colon (Figure 1Figure 2)^[4].

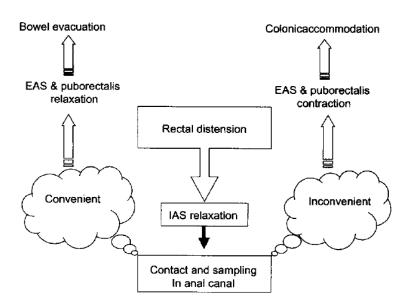


Figure 1: The mechanism of maintaining continence and defecation [1]

In normal defecation, the internal anal sphincter, external anal sphincter and puborectalis muscle are relaxed. Puborectalis relaxation allows widening and lowering of the anorectal angle, with perineal descent. Simultaneously, pubococcygeus muscle