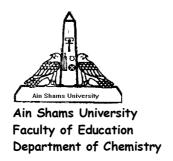


Using Pyranoquinoline in Synthesis of Some Novel Quinoline Derivatives

A Thesis Submitted By

Al-Shimaa Badran Abdel-Monem

B.Sc., Ed. 2008


In Partial Fulfillment for Requirements of Master Degree for Teacher's Preparation in Science (Organic Chemistry)

Supervisors

Prof. Dr. Mohamed Abass Mohamed Assist. Prof. Magdy Ahmed Mohamed Assist. Prof. Hany Mohamed Hassanin

> Department of Chemistry Faculty of Education Ain Shams University

> > **Cairo 2013**

Approval Sheet

Using Pyranoquinoline in Synthesis of Some Novel Quinoline Derivatives

Supervisors	Signature		
Prof. Dr. Mohamed Abass Moham	ned		
Prof. of Organic Chemistry, Faculty	of Education, Ain Shams University.		
Assist. Prof. Magdy Ahmed Moha	med		
Assist. Prof. of Organic Chemis	try, Faculty of Education, Ain Shams		
University.			
Assist. Prof. Hany Mohamed Hass	anin		
Assist. Prof. of Organic Chemis	stry, Faculty of Education, Ain Shams		
University.			
Head of Chem	istry Department		
Prof. Dr. Mostaf	a Mohamed Ismail		
•••••	•••••		
Higher studies:			
The thesis was approved	Approval date / / 2013		
Approved by Council of Faculty	Approved by Council of University		
Date / / 2013	Date / / 2013		

first of all, gratituted and
thanks come from all
my deep heart to
Allah
This work is dedicated to
my lovely father,
my lovely mother,
my lovely husband,
my pretty sister,
my lovely brother,
my lovely brother,
my lovely smart kid
(nour el-din)

Acknowledgement

First of all, thanks to <u>GOD</u>, for helping me to accomplish this thesis.

I would like to express my sincere gratitude and indebtedness to Prof. Dr. Mohamed Abass Mohamed, Prof. of Organic Chemistry, Faculty of Education, Ain Shams University; for his continuous and valuable discussions during supervision, continuous encouragement, valuable helping in interpretation of the results and lay out of this thesis, his valuable revision and to follow the progress of the work with keen interest and guidance.

I would like to express deep thanks and gratitude to Dr. Magdy Ahmed Mohamed, Assistant Prof. of Organic Chemistry, Faculty of Education, Ain Shams University; for his continuous and valuable discussions during supervision, for his suggestions the plan of research, valuable helping in interpretation of the results and lay out of this thesis and to follow the progress of the work with keen interest and guidance..

Also, I would like to express my sincere appreciation towards Dr. Hany Mohamed Hassanin Assistant Prof. of Organic Chemistry, Faculty of Education, Ain Shams University; for his continuous and valuable discussions during supervision, continuous encouragement, and his valuable revision.

I am truly thanks to Prof. Dr. Mostafa Mohamed Ismail the present Head of the Department of Chemistry and Prof. Dr. Said Mohamed Khalil, vice dean for graduate studies and research, and previous head of the Department of Chemistry, who introduced great kind facilities and encouragement.

Al-Shimaa Badran Abdel-Monem

Contents

Abbreviation table

Aim of the work

Abstract

Summary	i
Literature Survey	
1. Introduction	1
2. Synthesis of pyrano[3,2-c]quinolinones	2
2.1. From substituted anilines	2
2.2. From 4-hydroxyquinolin-2(1H)-one derivatives	6
2.3. From 3-acyl-4-hydroxyquinolin-2(1H)-ones	16
3. Chemical reactivity of pyrano[3,2-c]quinolinones	29
3.1. Hydrolysis	29
3.1.1. Alkaline hydrolysis	29
3.1.2. Acid hydrolysis	33
3.2. Hydrazinolysis	33
3.3. Electrophilic substitution reactions	36
3.3.1. Nitration	36
3.3.2. Acetylation	37
3.3.3. Halogenation	38
3.3.3.1. Bromination	38
3.3.3.2. Chlorination	38
3.3.4. Nitrosation	40
3.3.5. Coupling with diazonium salts	41
3.4. Nucleophilic substitution reactions	41
3.5. Nucleophilic Amiatation (lactamization)	45
3.6. Reactions with aldehydes, ketone, and ylidines	46
3.7. Reactions with 1,3-binucleophiles	49
3.8. Reactions with 1,4-binucleophiles	51
3.9. Reactions with active methylene compounds	52
Results and Discussion	54

Experimental	112
Conclusions	141
References	142
Suppplementary Spectral Data	158
Published work	190
Arabic Summary	ĺ
Arabic abstract	

Table of Abbreviations

Abbreviation	Expression
Ar	Aromatic or aryl group
Ac ₂ O	Acetic anhydride
AIBN	2,2-diazobisisobutyronitrile
aq.	Aqueous
°C	Celsius
¹³ C NMR	Carbon-13 nuclear magnetic resonance
D_2O	Deuterated water
DMF	Dimethylformamide
DMF-DMA	Dimethylformamide-dimethylacetal
DMSO	Dimethylsulfoxide
DMSO-d ₆	Hexadeuteriodimethylsulfoxide
en gl	Ethylene glycol
eV	electron Volt
G	gram (mass unit = 0.001 Kg)
¹ H NMR	Proton nuclear magnetic resonance
h	Hour
IR	Infrared spectrum
$I_{\rm r}$ %	Intensity ratio (relative to base peak ion)
$Yb(OTF)_3$	Ytterbium trifloromethanesulfonate
TBAB	Tetrabutylammonium bromide
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
J	Coupling constant (Hz) in NMR measurements
L-proline	Pyrrolidine-3-carboxylic acid
М	Molar (Molarity)

Abbreviation	Expression
m.p. (T _m)	Melting Point
MW	Microwave assisted process
M.Wt.	Molecular weight
m/z	Mass to electron charge ratio
mL	Milli-liter
MHz	Mega Hertz
	Gama
MS	Mass spectrum
α	Alpha
PPA	Polyphosphoric acid
PTC	Phase transfer catalysis
rt	Room temperature
TBAB	Tetrabutylammonium bromide
TEA	Triethylamine
Triflate	Trifluoromethanesulfonate
TMS	Tetramethylsilane
p-TsOH	p-Toluenesulfonic acid
Δ	Heat
δ	Chemical shift

Aim of the work

The present work aims to:

- Synthesize 6-ethyl-4,5-dioxo-5,6-dihydro-4*H*-pyrano[3,2-c]quinoline-3-carboxaldehyde (4) and utilize this compound as the starating material.
- 2. Prepare some new pyrazolylquinlinone derivatives *via* treatment of aldehyde **4** with some hydrazine derivatives.
- 3. Investigate the chemical reactivity of aldehyde **4** towards different nucleophilic reagents.
- 4. Synthesize new heterocyclic compounds, containing both quinolinone and other heterocycles in one molecular frame, of expected biological activity.
- 5. Study of spectral properties of different newly prepared quinolinone products.

Using Pyranoquinoline in Synthesis of Some Novel Quinoline Derivatives

Al-Shimaa Badran Abdel-Monem

Department of Chemistry, Faculty of Education, Ain Shams University

6-Ethyl-4,5-dioxo-5,6-dihydro-4*H*-pyrano[3,2-*c*]quinoline-3carboxaldehyde (4) was synthesized and efficiently utilized as a good precursor to obtain variety of novel pyrano[3,2-c]quinolinediones and 4-hydroxyquinolin-2(1H)-ones bearing variable heterocyclic systems. The chemical behavior of aldehyde 4 was studied towards some carbon nucleophiles, namely cyanoacetic acid, malonic acid, malononitrile, ethyl cyanoacetate, cyanoacetamide, malononitrile dimer. 3-methyl-1-phenyl-2-pyrazolin-5-one, thiazolidine-2,4-dione, thiobarbituric acid, cyclohexane-1,3-dione and dimedone. The reactivity of aldehyde 4 towards some amines and hydrazine derivatives was studied. The reaction of aldehyde 4 with hydroxylamine hydrochloride was carried out, under different conditions, leading to different product. Treatment of aldehyde 4 with some 1,2-, 1,3-, and 1,4-binucleophiles led to certain interesting five, six, and seven-membered heterocyclic substituents, viz. pyrazole, pyrimidine and diazepine. Structures of the synthesized products have been deduced on the basis of thier elemental and spectral analyses.

Keywords: pyrano[3,2-*c*]quinoline, Vilsmeier-Haack reaction, , ring-opening/ring-closure, nucleophilic reaction, heterocyclization.

Supervisors: Prof. Dr. Mohamed Abass Mohamed Professor of Organic Chemistry, Faculty of Education, Ain Shams University. Assist. prof. Magdy Ahmed Ibrahim Assist. Professor of Organic Chemistry, Faculty of Education, Ain Shams University. Assist. prof. Hany Mohamed Hassanin Assist. Professor of Organic Chemistry, Faculty of Education, Ain Shams University.