Surface Topography of Enamel Bleached At Home Versus In Office and its Influence on The Bond Strength to Resin Composite Restorative

Thesis

Submitted to the faculty
Of Oral and Dental Medicine
Ain Shams University

In partial fulfillment of the requirement of Master Degree in "Operative dentistry"

BY

Ahmed Mohamed Fouad

B.D.S.2007(Ain Shams University)

2012

Supervisors

Dr.Mokhtar Nagy Ibrahim

Professor of Operative Dentistry,
Faculty of Oral and Dental Medicine, Ain Shams
University

Dr.Hisham Abdel Wahab Mostafa

Professor of Operative Dentistry

Faculty of Oral and Dental Medicine, Ain Shams
University

Dr. Ahmed Zoheir Elhoshy

Assistant professor of operative Dentistry, Faculty of Oral and Dental Medicine, Cairo University

Acknowledgment

First, grace and foremost thanks to *GOD* for blessing this work until it has reached its end, as a little part of his generous help throughout our life.

I would like to express my sincere gratitude and respect to *Dr. MOKHTAR NAGY IBRAHIM*, Professor of Operative Dentistry, Faculty of Oral and Dental Medicine, Ain Shams University, and *Dr. HISHAM ABDEL WAHAB MOSTAFA*, Professor of Operative Dentistry, Faculty of Oral and Dental Medicine, Ain Shams University, for there continuous guidance and supervision, there kind encouragement and support throughout the entire period of the study.

I am deeply grateful to *DR. AHMED ZOHEIR EL-HOSHY*, Assistant Professor of Operative Dentistry, Cairo University, for his continuous supervision, great help and effort.

I would like to acknowledge all the staff members of Operative Dentistry Department, Faculty of Oral and Dental Medicine, Future University, for their continuous support.

Dedications

TO MY FAMILY

FOR THEIR ENDLESS SUPPORT AND ENCOURAGEMENT

TO MY CLOSE FRIENDS

FOR THEIR TRUE LOVE AND SUPPORT

List of contents

•	List of tables	i
•	List of figures	iii
•	Introduction	1
•	Review of literature	4
•	Aim of the study	39
•	Materials and methods	40
•	Results	54
•	Discussion	76
•	Summary and Conclusions	81
•	References	83
•	Appendix	A
•	Arabic summary	

List of Tables

List of Tables

		Page
Table (1):	Variables of the study	40
Table (2):	Interaction between variables for surface rough	ness
	And bond strength	40
Table (3):	The mean values and standard deviation of	
	Roughness (Ra) before and after both bleaching	Ţ,
	Techniques	57
Table (4):	Regression analysis by two-way ANOVA	
	was used to study the effect of different	
	variables on Roughness mean values	58
Table (5):	Effect of bleaching on Roughness	
	(Before vs. after)	59
Table (6):	Effect of bleaching technique on Roughness	
	(Light vs. chemical cure)	60
Table (7):	Effect of chemical cure bleaching on	
	Roughness	61
Table (8):	Effect of light cure bleaching on	
	Roughness	62

Table (9):	The mean values and standard deviation of	
	shear bond Strength (MPa) before and after	
	both bleaching techniques	65
Table (10):	Regression analysis by two-way ANOVA	
	was used to study the effect of different	
	variables on shear bond strength mean values	66
Table (11):	Effect of bleaching on shear bond strength	
	(Before vs. after)	67
Table (12):	Effect of bleaching technique on shear bond	
	strength (Light vs. chemical cure)	68
Table (13):	Effect of chemical cure bleaching on	
	shear bond strength	69
Table (14):	Effect of light cure bleaching on shear	
	hand strength	70

List of Figures

		Page
Figure (1):	Photograph showing Opalescence PF gel	
	syringe 35% carbamide peroxide	49
Figure (2):	Photograph showing Zoom bleaching gel	
	Syringe 25% hydrogen peroxide	49
Figure (3):	Photograph showing Zoom advanced	
	power lamp	49
Figure (4):	Photograph showing Filtek z350	
	composite syring	50
Figure (5):	Adper single bond Adhesive resin	50
Figure (6):	RelyX unicem capsules used to cement	
	composite blocks	50
Figure (7):	Preparation of Central Incisor to receive	
	the bleaching gel	51

Figure (8):	zoom advanced power lamp used to activate the	e gel
	Placed as close as possible	51
Figure (9):	USB Digital microscope with a built-in	
	Camera	51
Figure (10):	Silicon moulds contains composite blocks	52
Figure (11):	Composite block cemented on Labial	
	surface Central Incisors using Dual cure	
	Relyx unicem resin cement	52
Figure (12):	Shear bond strength test	52
Figure (13):	Environmental scanning electron microscope	53
Figure (14):	A Column chart of roughness mean values	
	before and after both Bleaching techniques	57
Figure (15):	A column chart of total Roughness mean values	3
	before and after bleaching	59
Figure (16):	A column chart of total Roughness mean values	3
	as function of bleaching techniques	60
Figure (17):	A column chart of Roughness mean values	

	before and after light cure bleaching 6	52
Figure (18):	A column chart of Roughness mean values	
	before and after chemical cure bleaching 6	51
Figure (19):	A Column chart of shear bond strength mean	
	values before and after both bleaching technique6	55
Figure (20):	A column chart of total shear bond strength	
	mean values before and after bleaching	57
Figure (21):	A column chart of total shear bond strength	
	mean values as function of bleaching techniques6	58
Figure (22):	A column chart of shear bond strength mean	
	values before and after light cure bleaching 7	70
Figure (23):	A column chart of shear bond strength mean value	S
	before and after chemical cure bleaching 6	59
Figure (24):	SEM Photomicrograph x1000 magnification	
	showing the enamel surface smoothened	
	before the application of bleaching system 7	1
Figure (25):	SEM Photomicrograph x1000 magnification	
	showing the enamel surface after application	

	of light cure bleaching system	72
Figure (26):	SEM Photomicrograph x1000 magnification	
	showing the enamel surface after application of	
	chemical bleaching system	73
Figure (27):	Picture showing roughness profile of	
	enamel surface before bleaching	74
Figure (28):	Picture showing roughness profile of enamel	
	surface after chemical bleaching	74
Figure (29):	Picture showing roughness profile of enamel	
	surface after light cure bleaching	75

Introduction

Today dental practice increasingly recognizes conservative treatments that do not encroach on natural structure. Words such as "biomodification" and "biomimetic" have been incorporated into the profession's vocabulary to best describe how dentists can successfully do no harm to the natural characteristics of teeth. Vital tooth bleaching can be considered as an example of biomodification. It is becoming a routine in many dental practices as it produces a conservative smile enhancement. It is minimally invasive and has been shown to alter the appearance of teeth from inside out resulting in an inherent intrinsic color change not through destructive or mechanical means (44).

Tooth discoloration varies in etiology, appearance, localization, severity and adherence to tooth structure. It may be classified as intrinsic, extrinsic and combination of both. Dietary chromogens and other external elements deposit on the tooth surface or within the pellicle layer either directly or indirectly to form extrinsic discoloration. Stains within the dentine or intrinsic discoloration often results from systemic or pulpal origin, while internalized stains are the result of extrinsic stains entering the dentine via tooth defects such as cracks on the surface⁽⁴⁵⁾.

The first reports of tooth bleaching occurred as early as 1877. However, the acceptance of tooth bleaching as non invasive conservative treatment increased during the past 30 years using heated, high concentration of hydrogen peroxide ranging from 25-35 percent ⁽⁴⁸⁾.

Bleaching agents are provided for at-home or in-office therapies. At home bleaching is less expensive, but patient's collaboration is essential to