

GEOPHYSICAL CONTRIBUTION TO EVALUATE THE CONDITIONS OF GROUNDWATER OCCURRENCE IN TUSHKA AREA – SOUTH WESTERN DESERT- EGYPT.

A Thesis from Adel Diab Mohammed Kotp

B. Sc., Geology (Geophysics), Assiut University M. Sc., Applied Geophysics, Al-Azhar University

Submitted For

The degree of Philosophy Doctor (Ph. D.) of science in Geophysics (Applied Geophysics)

To

Geophysics Department, Faculty of Science
Ain Shams University

Supervision Committee: Prof. Dr. Mahdy Mohamed Ahmed Abd El-Rahman

Prof. of geophysics, Geophysics Department, Faculty of Science, Ain Shams University, Cairo.

Dr. Ahmed Mustafa El Sayed Abd El-Gawad

Assistant Prof. of geophysics, Geophysics Department, Faculty of Science, Ain Shams University, Cairo

Prof. Dr. Talat Ali Abd Ellatif

Prof. of geophysics, Geophysical Exploration Department, Desert Research Center, Cairo.

Prof. Dr. Galal Hassan Galal Hussien.

Prof. of geophysics, Geophysical Exploration Department, Desert Research Center, Cairo.

Geophysics Department, Faculty of Science
Ain Shams University
Cairo, 2013

ABSTRACT

ABSTRACT

The present studies deal with the integration between two different types of the geophysical methods which are Land magnetic and Electrical surveys to evaluate the conditions of groundwater occurrence. The investigated area is located in south eastern part of Western Desert of Egypt. It lies between latitudes 22° 15°& 22° 57° N and longitudes 31° 12° & 31° 54° E. It is bounded by Wadi Halfa road to the west and Tushka Canal to the east. The area under study covers about 2500 km². This area is accessible through Cairo – Aswan –Abu Simble asphaltic Road and Owinat-Tushka Road.

The geomorphologic features in the area are, Aswan High Dam Lake, Wadi Kurkur Pediplain and Tushka Depression.

Geologically the subsurface sequence in the area is basement rocks followed unconformable with Nubian sandstone intercalated with clay and silt and covered unconformable by Quaternary deposits in area of study. and the structural elements represented by Fault system.

The present study aims to evaluate the conditions of groundwater occurrence by identifying vertical and horizontal extensions of the sedimentary succession, especially water bearing formations and the structural elements (fractures and faults) which affected on water bearing formation.

The surface of the study area according to the result of remote sensing applications formed from seven classes. These are surface water in Lake Nasser, plant cover, dry channels, Nubian Sandstone on the floor or covered by sand sheets, Nubian Sandstone as hilly lands or mountains, basalt and Nubian sandstone affected by hydrothermal solutions.

Integrated geophysical methods were carried out using Land magnetic survey, geoelectrical methods such as onedimensional (1-D) resistivity (Vertical Electrical Sounding), ABSTRACT

two-dimensional (2-D) imaging with different configurations and three dimensional (3-D) surveys.

Generally, the magnetic study reveals; the basement relief, depth to the basement and the subsurface structures. Also the one-dimensional resistivity reveals; the subsurface sequence and its horizontal and vertical extensions, the water bearing formations and their horizontal and vertical extensions, subsurface structures especially which affected on the groundwater occurrences. The results are represented in magnetic profiles, geoelectrical cross sections and maps.

The interpretation results of the modeled land magnetic profiles were used in construction of depth to the basement surface and level of the basement contour maps. These maps revealed that the depth to basement ranges from zero meters in the north and west parts to about seven hundred meters in the middle part around Abu Simbel road. This variation is due to the effect of structural faults which lead to a formation of a group of horests and grabens. These faults have more or less NE-SW and NW-SE, the basement relief around Khor Tushka and Lake Nasser is less than +150m and it is less than the maximum (180m) and minimum (164m) surface water level.

The interpretation of the resistivity sounding led to the detection of five main geoelectric units in the south of khor Tushka area, the fourth one is the confined water bearing formation. On the other hand, three main geoelectrical units are detected in the north of khor Tushka area, the third one is the free water bearing formation.

The thickness of the water bearing sandstone as detected from integration between the geoelectrical and geomagnetic results and reach to 440m increases at the middle and decrease to east and west due to basement rising. The resistivities of the water-bearing formations showed the similarity in some parts with salinity map of the study area and gave high resistivity ABSTRACT

values. These high values appear as a result of hydrothermal solutions that cause the rock more massive, and consequently decreases its permeability i.e. decreases its hydraulic conductivity. The result of 2-D modeling showed that there is a shallow aquifer in some parts of the south of khor Tushka.

Finally, the priority map was formed to identify the best regions for drilling water wells in the future and evaluate the state of drilled wells. LIST OF CONTENTS IV

LIST OF CONTENTS	
Subject	Page No.
AKNOWLEDGMENT	
ABSTRACT	I
LIST OF CONTENTS	IV
LIST OF FIGURES	VIII
LIST OF TABLES	XIII
INTRODUCTION	
General View	1
Location of the Study Area	2
Meteorological Data	2
CHAPTER I	
GEOMORPHOLOGICAL, GEOLOGICAL,	
HYDROGEOLOGICAL ASPECTS	
I.i. Geomorphology	5
I.ii. Geology	7
I.ii.i. Lithostratigraphy	7
I.ii.i.i. Basement Rocks	7
I.ii.ii. Sedimentary Rocks	7
-Upper Jurassic – Lower Cretaceous	7
-Lower Cretaceous	8
-Quaternary deposits	9
I.ii.i.iii. Volcanic Rocks	11
I.ii.ii. Structure	11
I.iii. Hydrogeology	13
I.iv. Petrophysical Study	14
Aim of the Study	14
Plan of Work	15
CHAPTER II	
APPLICATION OF REMOTE SENSING	
TECHNIQUE	
II-i. Introduction	17
II-ii. Basic Concept	17
II-iii. Data Acquisition	17
II-iv. Data Preprocessing	20
II-v. Unsupervised Classification	25

LIST OF CONTENTS V

Subject	Page No.
II-vi. Supervised Classification	25
II-vii. The Results	26
CHAPTER III	
MAGNETIC STUDIES	
III-i. Introduction	29
III-ii. Earth's Magnetic Field:-	29
III-iii. Field Work of the Magnetic Survey: -	31
III-iv. Geomagnetic Data Corrections and	34
Qualitative interpretation	
III-iv-i. Drift-Diurnal Correction	34
III-iv-ii. Description of Total Intensity Map	35
III-iv-iii. Reduced to the Pole (RTP) Correction	35
III-iv-iv. Description of (RTP) Magnetic Map	37
III-v. Data Analysis and Quantitative	39
Interpretation	
III-v-i. Modeling Technique Application	39
III-v-ii. Result of Quantitative Interpretation	40
III-v-ii-i. The Modeled Profiles of Nearly	40
N-S Direction	
Modeled Profile I (M1-M1`)	40
Modeled Profile II (M2-M2`)	41
Modeled Profile III (M3-M3`)	44
Modeled Profile IV (M4-M4`)	44
Modeled Profile V (M5-M5`)	48
Modeled Profile VI (M6-M6`)	48
Modeled Profiles VII (M7-M7`)	51
Modeled Profiles VIII (M8-M8`)	51
Modeled Profiles IX (M9-M9`)	51
➤ Modeled Profiles X (M10-M10`)	51
III-v-ii-ii. The Modeled profiles of Nearly	56
W-E Direction	
➤ Modeled Profiles XI (M11-M11`)	56
➤ Modeled Profiles XII (M12-M12`)	58
➤ Modeled Profiles XIII (M13-M13`)	58
➤ Modeled Profiles XIV (M14-M14`)	58

LIST OF CONTENTS VI

➤ Modeled Profiles XV (M15-M15`)	62
➤ Modeled Profiles XVI (M16-M16`)	62
➤ Modeled Profiles XVII (M17-M17`)	62
➤ Modeled Profiles XVIII (M18-M18)	62
➤ Modeled Profiles XIX (M19-M19`)	67
➤ Modeled Profiles XX (M20-M20`)	68
➤ Modeled Profiles XXI (M21-M21`)	68
➤ Modeled Profiles XXII (M22-M22`)	68
➤ Modeled Profiles XXIII (M23-M23`)	68
➤ Modeled Profiles XXIV (M24-M24`)	68
III-vi. Discussion of the Magnetic Result	73
CHAPTER IV	
GEOELECTRIC STUDIES	
IV-i. Introduction	77
IV-ii. Basic Principles	77
IV-iii. Field Techniques and Works	78
i. Vertical Electrical Sounding (1-D).	78
ii. Two-Dimensional (2-D) Electrical Imaging	80
iii. Three-Dimensional (3-D) "Electrical	83
Tomography"	
IV-iv. Interpretation Process and its Result of	84
Electrical Resistivity Data	
IV-iv-i. Qualitative Interpretation	84
IV-iv-ii. Quantitative Interpretation	87
IV-iv-ii-i. Quantitative Interpretation	87
for 1-D Data (VES)	
IV-iv-ii-i.i. The Southwestern Portion	89
-Geoelectrical Cross Sections	95
Cross Section IV (E1-E1')	95
Cross Section V (E2-E2')	98
Cross Section VI (E3-E3')	101
Cross Section VII (E4-E4')	104
Cross Section VIII (E5-E5')	106
Cross Section XII (E6-E6')	108
Cross Section XIII (E7-E7')	110

LIST OF CONTENTS VII

Subject	Page No.
Cross Section XIV (E8-E8')	112
Cross Section XV (E9-E9')	114
Cross Section XVI (E10-E10')	116
Cross Section XVII (E11-E11')	118
IV-iv-ii-i.ii. The Northeastern Portion	120
- Geoelectrical Cross Sections	122
Cross Section XVIII (E12-E12')	122
IV-iv-ii-ii. Quantitative Interpretation for	124
2-D imaging	
IV-iv-ii-iii. Quantitative Interpretation for	128
(3-D) Tomography	
IV-v. General Conclusion of the Geoelectrical	130
Studies	
CHAPTER V CONDITIONS OF GROUNDWATER	
OCCURRENCES IN THE STUDY AREA	
V-i- Groundwater Aquifers and Their Types.	135
V-ii- Groundwater Aquifers Potentiality	136
V.iii- The Relation Between Groundwater	136
Aquifers Resistivities and Salinity of	
Groundwater	
V-iv- The Relation Between Groundwater	137
Aquifers and Surface Water in Khor Tushka	
and lake Nasser.	120
V-v- Effect of the Geological Structures on the	138
Groundwater Occurrence	120
V-vi- Priority Map	139
SUMMARY AND CONCLUSIONS	143
RECOMMENDATIONS	150
REFERENCES	151

LIST OF FIGURES VIII

LIST OF FIGURES

Subjec	et .	Page No.
1.	Figure (1) Location Map of the Study Area	3
	Figure (2) The Main Geomorphologic Unites	6
	of the Study Area (Modified After El Shazly et	
	al, 1977)	
3.	Figure (3) The Composite Stratigraphic	9
	Succession is related to Study Area (After	
	Conoco, 1987).	
4.	Figure (4) Geological Map of the Study Area	10
	(After Conoco. 1987).	
5.	Figure (5) Structure Lineation Map of Abu	13
	Simbel - Tushka Area (Modified After	
	EGSMA, 1981 and Conoco, 1987)	
6.	Figure (6a) Raw Digital Data of Landsat	19
	Image after Layer Stacking (p175-r44).	
7.	Figure (6b) Raw Digital Data of Landsat	19
	Image after Layer Stacking (p175-r45)	
8.	Figure (7) Raw Data of the Digital Elevation	20
	Model	
9.	Figure (8) Mosaic of the Landsat ETM+	22
	Scenes Involving the Study Area	
10	O.Figure (9) The Final Representative Study	23
	Area After Subset Landsat Image	
11	.Figure (10) The Final Representative Study	24
	Area After Subset of DEM	
12	2. Figure (11) 3D View of the Study Area	25
13	3. Figure (12) Unsupervised Classification Map	27
14	Figure (13) Supervised Classification Map	28
15	5. Figure (14): The Main Magnetic Field	31
	Components.	
16	5. Figure (15): Location Map of Geomagnetic	33
	Profiles	
17	7. Figure (16): Total Magnetic Intensity Map	36

LIST OF FIGURES IX

Subject	Page No.
18. Figure (17): Total Magnetic Intensity Map	38
Reduced To The Pole	40
19. Figure (18): Two-Dimensional Modeled	42
Magnetic Profile I (M1-M1')	12
20. Figure (19): Two-Dimensional Modeled	43
Magnetic Profile II (M2-M2`)	1.6
21. Figure (20): Two-Dimensional Modeled	46
Magnetic Profile III (M3-M3`)	4.5
22. Figure (21): Two-Dimensional Modeled	47
Magnetic Profile IV (M4-M4`)	4.0
23. Figure (22): Two-Dimensional Modeled	49
Magnetic Profile V (M5-M5`)	
24. Figure (23): Two-Dimensional Modeled	50
Magnetic Profile VI (M6-M6`)	
25. Figure (24): Two-Dimensional Modeled	52
Magnetic Profile VII (M7-M7`)	
26. Figure (25): Two-Dimensional Modeled	53
Magnetic Profile VIII (M8-M8`)	
27. Figure (26): Two-Dimensional Modeled	54
Magnetic Profile IX (M9-M9`)	
28. Figure (27): Two-Dimensional Modeled	55
Magnetic Profile X (M10-M10`)	
29. Figure (28): Two-Dimensional Modeled	57
Magnetic Profile XI (M11-M11`)	
30. Figure (29): Two-Dimensional Modeled	59
Magnetic Profile XII (M12-M12`)	
31. Figure (30): Two-Dimensional Modeled	60
Magnetic Profile XIII (M13-M13`)	
32. Figure (31): Two-Dimensional Modeled	61
Magnetic Profile XIV (M14-M14`)	
33. Figure (32): Two-Dimensional Modeled	63
Magnetic Profile XV (M15-M15`)	

LIST OF FIGURES X

Sul	pject	Page No.
	34. Figure (33): Two-Dimensional Modeled	100. 64
	Magnetic Profile XVI (M16-M16`)	UT
	35. Figure (34): Two-Dimensional Modeled	65
	Magnetic Profile XVII (M17-M17`)	03
	36. Figure (35): Two-Dimensional Modeled	66
	Magnetic Profile XVIII (M18-M18`)	00
	37. Figure (36): Two-Dimensional Modeled	67
	Magnetic Profile XIX (M19-M19`)	07
	38. Figure (37): Two-Dimensional Modeled	68
	Magnetic Profile XX (M20-M20')	00
	39. Figure (38): Two-Dimensional Modeled	69
	Magnetic Profile XXI (M21-M21`)	0)
	40. Figure (39): Two-Dimensional Modeled	70
	Magnetic Profile XXII (M22-M22`)	70
	41. Figure (40): Two-Dimensional Modeled	71
	Magnetic Profile XXIII (M23-M23`)	, 1
	42. Figure (41): Two-Dimensional Modeled	72
	Magnetic Profile XXIV (M24-M24`)	
	43. Figure (42): Depth to Basement Contour Map	74
	of the Tushka Area.	
	44. Figure (43a): Basement Relief Contour Map of	75
	the Tushka Area.	
	45. Figure (43b): 3D Basement Relief of the	75
	Tushka Area.	
	46. Figure (44): Inferred Faults From the Magnetic	76
	Data	
	47. Figure (45): Simplified current flow lines and	78
	equipotential surfaces arising from (a) a single	
	current source and from (b) a set of current	
	electrodes	
	48. Figure (46): Sketch of the field setup for a	79
	VES in Schlumberger configuration	

LIST OF FIGURES XI

Sul	oject	Page No.
	49. Figure (47): Location Map of Geoelectrical Measurements in the area	81
		82
	50. Figure (48): Two - Dimensional (2-D) Wenner	02
	Imaging array 51 Figure (40): Three Dimensional "2 D" Pole	83
	51. Figure (49): Three Dimensional "3-D" Pole-	03
	Pole array in across-diagonal survey	06
	52. Figure (50): Example of the (VES) Curves in	86
	the Study Area. 53 Figure (51a): Composite Log and the	88
	53. Figure (51a): Composite Log and the Interpreted Results at Vertical Electrical	00
	Sounding Station No. 22.	
	54. Figure (51b): lithological Data and the	88
	Interpreted Results at Vertical Electrical	00
	Sounding Station No. 51.	
	55. Figure (52): Geoelectrical Cross Section along	97
	E1-E1` Profile.	71
	56. Figure (53): Geoelectrical Cross Section along	100
	E2-E2` Profile.	100
	57. Figure (54): Geoelectrical Cross Section along	103
	E3-E3` Profile.	
	58. Figure (55): Geoelectrical Cross Section along	105
	E4-E4` Profile.	
	59. Figure (56): Geoelectrical Cross Section along	107
	E5-E5` Profile	
	60. Figure (57): Geoelectrical Cross Section along	109
	E6-E6` Profile.	
	61. Figure (58): Geoelectrical Cross Section along	111
	E7-E7` Profile.	
	62. Figure (59): Geoelectrical Cross Section along	113
	E8-E8` Profile.	
	63. Figure (60): Geoelectrical Cross Section along	115
	E9-E9` Profile.	

LIST OF FIGURES XII

Sul	pject	Page No.
	64. Figure (61): Geoelectrical Cross Section along	117
	E10-E10` Profile.	
	65. Figure (62): Geoelectrical Cross Section along	119
	E11-E11` Profile.	
	66. Figure (63): Geoelectrical Cross Section along E12-E12` Profile.	123
		126
	67. Figure (64): The Apparent Resistivity Pseudo	126
	Section, Calculated Model and Inversion	
	Model (True Resistivity) along the First Sit of	
	2D Imaging. 68 Figure (65): The Apparent Registivity People	127
	68. Figure (65): The Apparent Resistivity Pseudo	127
	Section, Calculated Model and Inversion	
	Model (True Resistivity) along the Second Sit	
	of 2D Imaging.	120
	69. Figure (66): Horizontal Slice of 3-D Obtained	129
	Model from the Inversion of pole-pole Survey.	101
	70. Figure (67): Isoresistivity Contour Map of the	131
	Water Bearing Sandstone in the Southwestern	
	Portion.	100
	71. Figure (68): Depth to Water Bearing	132
	Sandstone in the Southwestern Portion.	100
	72. Figure (69): Isopach Contour Map of the W. B.	133
	Formation in the Southwestern Portion.	101
	73. Figure (70): Inferred Faults from the	134
	Geoelectrical Data Interpretation.	
	74. Figure (71): Correlation between;	137
	a) Isoresistivity Contour Map of W. B. F and	
	b) Salinity of Groundwater in it.	
	75. Figure (72): Inferred Faults from Land	140
	Magnetic and Geoelectrical Measurements.	
	76. Figure (73): Priority Map According to Result	142
	of Geoelectrical Measurements.	

Subject		Page No
1. Т	Table (1): Average Monthly	4
	Meteorological Data during the last 39 years.	
2. 1	Table (2): Specifications of landsat Image,	18
F	Enhance Thematic Mapper (ETM+).	
3. T	Table (3): The Direction and Length of the	32
N	Magnetic Profiles.	
	Table (4): The IGRF Values Component on	34
t	he Area	
5. T	Table (5): Shows all Curve Types of (VES)	85
i	n the Study Area	
6. T	Table 6: Shows the Interpretation Data for	92-
a	all VES's in the South Portion	94
7. 1	Table (7): Shows the Interpretation Data for	121
a	all VES's in the North Portion	

LIST OF PHOTO

Photo (1): The Proton Magnetometer	33
(Envimag).	

ACKNOWLEDGMENT

Thanks to Allah for granting me health and patience to complete this thesis.

I wish to express my deep gratitude and appreciation to *Prof. Dr. Talaat Ali Abd Ellatif and Prof. Dr. Galal Hassan Galal*, Desert Research Center for suggesting the point of research, supervising and planning the work and for his continuous advising during the field work, for help during the interpretation of the data and critical reading and revising the manuscript.

I wish to express my deep gratitude and appreciation to *late Prof. Dr. Mahdy Mohammed Ahmed Abd El-Rahman*, Faculty of Science, Ain Shams University for supervising, continuous advising during the work and for critical reading and revising the manuscript.

I also like to thank **Dr. Ahmed Moustafa El-Sayed Abd El-Gawad**, Assistant Professor, Department of Geophysics, Faculty of Science, Ain Shams University to help me in administrative matters concerning doctoral thesis after the death of Prof. Dr. Mahdy Abd El- Rahman, Professor, Department of Geophysics, Faculty of Science, Ain Shams University.

Special thanks to the staff members of the **Geophysics Department, Desert Research Center**, for their help during the fieldwork, and special thanks to Dr. Abd Elsamad Abd Elsttar Ali, for their help during the office work.

Finally, I wish to express my gratitude and appreciation to my parents, wife for their patience and continuous encouragement.

Thanks,
Adel Diab Mohammed Kotb