DETECTION AND MINIMIZATION OF HIGH RISK PERSISTENT CHEMICAL POLLUTANTS IN RATIONS, MILK AND THEIR PRODUCTS

By

MOHAMED TAMER REFAAT ABD EL-MOOTAAL

B.Sc. Agric. Sciences (General Branch), Cairo University, 1999 MSc. Environmental Agric. Sciences, Ain Shams University, 2009

THESIS

Submitted In Partial Fulfillment Of The Requirement for the Degree of

DOCTOR OF PHILOSOPHY In Environmental Sciences

Department of Environmental Agricultural Sciences Institute of Environmental Studies and Research Ain Shams University EGYPT

APPROVAL SHEET

DETECTION AND MINIMIZATION OF HIGH RISK PERSISTENT CHEMICAL POLLUTANTS IN RATIONS, MILK AND THEIR PRODUCTS

Submitted By

MOHAMED TAMER REFAAT ABD EL-MOOTAAL

B.Sc. Agric. Sciences (General Branch), Cairo University, 1999 MSc. Environmental Agric. Sciences, Ain Shams University, 2009

This Thesis Towards a Doctor of Philosophy (PhD) Degree In Environmental Agricultural Sciences Has Been Approved by:

Name	Signature
Prof. Dr. Amged Mohamed Kamel Sobeil	ha
Professor of Chemistry and Toxicology of Pesticide	es,
Faculty of Agriculture, Ain Shams University.	
Prof. Dr. Fawzia Hassan Ragab Abd Rab	00
Professor of Dairy Sciences,	
Faculty of Agriculture, Cairo University.	
Prof. Dr. Mohamed Abd El-Razek El-Na	wawy
Professor of Microbiology of Food Sciences Depar	•
Faculty of Agriculture. Ain Shams University.	

DETECTION AND MINIMIZATION OF HIGH RISK PERSISTENT CHEMICAL POLLUTANTS IN RATIONS, MILK AND THEIR PRODUCTS

By

MOHAMED TAMER REFAAT ABD EL-MOOTAAL

B.Sc. Agric. Sciences (General Branch), Cairo University, 1999 MSc. Environmental Agric. Sciences, Ain Shams University, 2009

THESIS

Submitted In Partial Fulfillment of The Requirement for the Degree of

DOCTOR OF PHILOSOPHY

In

Environmental Sciences

Department of Environmental Agricultural Sciences

Under the Supervision of:

Prof. Dr. Mohamed Abd El-Razek El-Nawawy

Professor of Microbiology - Food Sciences Department, Faculty of Agriculture, Ain Shams University.

Dr. Mohamed El-Sayed Abd El-Fatah Amer

Senior Researcher, Central lab of Residue Analysis of Pesticides and Heavy Metals in Food, Agricultural Research Center.

Late Prof. Dr. Zidane Hendy Abd El-Hamid

Professor of Chemistry and Toxicology of Pesticides, Faculty of Agriculture, Ain Shams University.

ACKNOWLEDGMENT

"I do THANKS TO my God "Allah" the almighty, nothing I could put in writing would adequately describe my grateful thanks for giving me the strength and courage in going through this work successfully "

I would like to express my deeply gratitude to my supervisor, **Prof. Dr. Mohamed Abd El-Razek El-Nawawy**, Professor of Microbiology Food Science Department, Faculty of agriculture, Ain Shams University,
for his contribution to my scientific knowledge, continuous and generous
support, guidance and friendship. Thanks **Dr. M. El-Nawawy** you have
had a far-reaching impact on my professional development. Many thanks
for bringing me to this point in my academic career.

I would like to thank my supervisors, Late Prof. Dr. Zidane Hendy Abd El-Hamid, Professor of Chemistry and Toxicology of Pesticides, Faculty of agriculture, Ain Shams University and Dr. Mohamed El-Sayed Abd El-Fatah Amer, Senior Researcher, Agricultural Research Center, for their kind interest and help.

I would like to express my sincere appreciation to Prof. Dr. Salwa Dogheim, Prof. Dr. Sohair A. Gadalla and Prof. Dr. Ashraf M. El-Marsafy, for their belief in me; they gave me the keys to become a leading scientist someday.

I would like also to thank all the members of my family for encourage and support me, colleagues and friends in the Central laboratory of Residue Analysis of Pesticides, Agricultural Research Center, for their useful and friendly discussions. I would like also to extend my thanks to Prof. Dr. Yasser M. Nabil, Dr. Ashraf Sami and Dr. Sherif Taha for their super technical support and assistance.

ABSTRACT

DETECTION AND MINIMIZATION OF HIGH RISK PERSISTENT CHEMICAL POLLUTANTS IN RATIONS, MILK AND THEIR PRODUCTS

In the present study, (59) animal feed and (35) cow milk samples had been collected and analyzed to detect the levels of contamination by persistent organic pollutants (dioxins and dl-PCBs); firstly at certain Egyptian farms which represent the eastern, western and middle Egypt including the following governorates: Qaliubiya, Sharkia, Monoufia, Damietta, Kafr El-Sheikh, Gharbiya, Ismailia, Port Said, Noubaria (Beheira), Fayoum and Beni Sweaf; secondly as continuous, (92) animal feed and (106) different varieties of processed cow liquid milk samples; including full cream milk (69), half cream milk (22) and skimmed milk (15) had been collected and analyzed for these pollutants from the big markets in terms of geographical distribution in which represents the same location farms. The obtained results indicated that the highest (TEQ) concentration of Σ (PCDD/Fs + dl-PCBs) was founded in Kafr El-Zayat farm (Gharbiya governorate) which represent rural areas and nearby industrial zones; hence the cow milk, animal feed (vegetable oils) and clover (green fodder) samples were up to 14.60 pgTEQ.g-1 fat weight (fw), 1.81 and 1.48 pgTEQ.g⁻¹ dry weight (dw), respectively in which exceed the EU maximum limits in food of 6 pg WHO-TEQ g⁻¹ fat weight and the animal feed samples were exceed the EU Maximum limits of 1.25 pgWHO-TEQg⁻¹ dry weight. However, the lowest (TEQ) concentration of Σ(PCDD/Fs + dl-PCBs) was founded in El-Noubaria farm (Beheira governorate), sited in the modern reclaimed lands near urban areas; hence the cow milk was 1.48 pg TEQ g⁻¹ fw and the animal feed sample as [soybean-cereals] was 0.09 pg TEO g⁻¹ dw, there were below the EU limits, respectively. Other samples collected from markets, was observed that, the dioxins contaminated samples which exceeded the European maximum permissible levels (EC, 2006) were up to (37.7 and 9%) in processed milk and animal feed, respectively. While for dl-PCBs, there were exceeded the EU limits with ratio (1 and 0%) in processed milk and animal feed, respectively. Regarding to ADI, our results proved that the mean current dietary intake from consumption of milk for PCDDs/PCDFs, dl-PCBs and total TEQ which represent 0.35 pg WHO-TEQ kg⁻¹ body weight day⁻¹ with ratio (8.6%) was below the international acceptable daily intake (ADI) which is 1-4 pg WHO-TEQ kg⁻¹ bw day⁻¹. To mitigate the PCDD/Fs and dl-PCBs in the contaminated full cream and skim milk samples, Laccase enzyme was added in different concentrations (3.6, 7.2, and 10.8 unit) under contact time of 2hr at 30°C. In general, the degradation of PCDD/Fs and dl-PCBs were markedly observed in full cream milk samples, where the highest degradation were obtained using 10.8U laccase in which a total of 21 and 23% reduction for PCDD/Fs and dl-PCBs, respectively. On the other hand, very limited reduction was occurred in skim milk samples, even when using higher laccase conc. of 10.8U, whereas reduced as a total of 6 and 14% for PCDD/Fs and dl-PCBs, respectively. After measurements of fat contents, protein and pH; it was observed that, there were no effects obtained on the fat, total protein contents and pH of milk samples. The highest degradation efficiency of dioxin and dl-PCBs congeners, was observed for 1,2,3,7,8,9-HxCDD of 28 and 8%, and PCB118 of 49 and 19% in full cream milk and skim milk, respectively. Whereas, the lowest degradation efficiency of dioxin and dl-PCBs congeners, was obtained for 2,3,7,8-TCDF of 16 and 6%, and PCB81 of 12 and 8% in full cream

milk and skim milk, respectively. Thus, it can recommend to use laccase enzyme to mitigate the persistent organic pollutants (dioxins and dl-PCBs) from contaminated feed and milk products to produce safe food products.

<u>Key Words</u>: Persistent Organic Pollutants – dioxin – dl-PCBs – animal
 feed- cow milk – governorates – EU limits - acceptable
 dietary intake – laccase enzyme.

LIST OF CONTENTS

Heading number	Item Name	Page
1	INTRODUCTION	1
2	REVIEW OF LITERATURE	4
2.1	Health effects of POPs in humans	4
2.2	Toxic effects of POPs in animals	5
2.3	Dioxin and PCBs method of analysis in Milk and Feed	6
2.4	Dioxin and PCBs monitoring in Milk and Feed	16
2.5	Dioxin and PCBs health risk assessment and total diet study	
	(TDS) in Milk	27
2.6	Dioxin and PCBs reduction	37
3	MATERIALS AND METHODS	47
3.1	Sampling and samples preparation	47
3.1.1	Sample grinding	51
3.2	Materials and standards	52
3.2.1	Chemicals and reagents	52
3.2.2	Reduction Oxidants	52
3.2.3	Reference matrices	53
3.2.4	Standard solutions	53
3.3	Instruments used in sample preparation and analysis	59
3.4	Instruments used for Dioxins and DL-PCBs analysis	59
3.4.1	Gas Chromatography (GC)	60
3.4.2	High Resolution Mass Spectrometer (HRMS)	61
3.5	Dioxins and DL-PCBs method validation	61
3.5.1	Initial Precision and Recovery (IPR) (Repeatability)	62
3.5.2	Ongoing Precision and Recovery (OPR) (Reproducibility)	62
3.6	Dioxins and dl-PCBs analytical method	64
3.6.1	The extraction of samples	64
3.6.1.1	Feed sample extraction	64
3.6.1.2	Liquid milk sample extraction	64
3.6.2	The clean-up of samples	65
3.6.3	Calculation of PCDD/Fs and DL-PCBs concentration in	
	samples	65
3.6.4	Quality assurance and quality control of method (QA/QC)	67
3.6.4.1	Quality assurance	67
3.6.4.2	Quality control check sample: Certified reference material	67
3.7	Mitigation treatment for dioxins and dl-PCBs in milk	67
3.8	Determination of total protein milk by Kjeldahl method	
	before and after treated by the Oxidants reduction	69

LIST OF CONTENTS

Heading number	Item Name	Page
4	RESULTS AND DISCUSSION	70
4.1	The quality control of the used methods	70
4.1.1	PCDDs/Fs and dl-PCBs analysis	70
4.1.1.1	Repeatability	70
4.1.1.2	Reproducibility	70
4.1.1.3	Measurement Uncertainty	75
4.1.1.4	Relative Standard Uncertainty	76
4.1.1.5	Combined Uncertainty (Uc)	77
4.1.1.6	Expanded Uncertainty (2U)	77
4.2	Levels of dioxins and dioxin like PCBs in animal feed and	
	liquid cow milk in farms and hypermarkets.	81
4.2.1	Occurrence, profile congeners and variability of	
	Polychlorinated Dibenzo- <i>p</i> -dioxins (PCDDs),	
	Polychlorinated Dibenzofurans (PCDFs) and Dioxin-Like	
	Polychlorinated Biphenyls (dl-PCBs) in some Egyptian	
	Cow's milk farms.	81
4.2.2	Determination of (PCDDs), (PCDFs) and (dl-PCBs) for	
	processed cow milk and animal feed in Egyptian markets in	
	the same governorates.	93
4.2.3	Estimated daily intake of PCDD/Fs and dl-PCBs through	
	consumption of Egypt cow milk (exposure assessment).	107
4.3	Mitigation of full cream and skim milk contaminated by	440
	dioxin and dl-PCBs compounds.	113
4.3.1	The effective of Laccase Enzyme on dioxins (PCDD/Fs)	440
	and dl-PCBs in full cream and skim milk.	113
4.3.1.1	PCDD/Fs and dl-PCBs degradation and fat content.	113
4.3.1.2	Effect of laccase on protein content and pH of milk.	119
4.3.1.3	Effect of laccase on dioxins (PCDD/Fs) and dl-PCBs	120
_	contaminated milk.	120
5	CONCLUSION	126
6	SUMMARY	128
7	REFERENCES	134
8	APPENDICES	157
	Arabic Summary	

LIST OF TABLES

Table	Item Name	Page
number	Item Name	1 age
1a	Types, collection sites and number of the samples for raw cow's liquid milk and animal feed samples collected from farms.	49
1b	Number of raw cow's liquid milk samples collected from another farms.	50
1c	Types, collection sites and number of the samples for processed cow's liquid milk and animal feed samples collected from different markets.	51
2	Toxic equivalency factor (TEFs) for PCDDs, PCDFs and dl-PCBs recommended by the World Health Organization.	57
3	Typical physico-chemical properties of PCDDs, PCDFs and dl-PCBs.	58
4	The repeatability and reproducibility experiments of Dioxins in feed samples.	71
5	The repeatability and reproducibility experiments of Dioxins in milk samples.	72
6	The repeatability and reproducibility experiments of Dioxins like PCBs in feed samples.	73
7	The repeatability and reproducibility experiments of Dioxins like PCBs in milk samples.	74
8	The Uncertainty calculations of Dioxins in feed and milk samples. The Uncertainty calculations of Dioxins like PCBs in feed	78
9 10	and milk samples. The Uncertainty calculations of Dioxins and Dioxins like	79
10	PCBs in feed and milk samples. The proficiency tests Z-scores calculations of dioxins and	79
12	dioxins like PCBs in different samples Fat ratio (%), Σ PCDD/Fs, Σ DLPCBs and Total TEQ	80
12	concentrations in cow milk (pg TEQ g ⁻¹ fat basis) and animal feed (pg TEQ g ⁻¹ dry basis) collected from the highest and lowest contaminated locations of Egyptian dairy farms.	83
13	Number of raw cow milk and animal feed samples collected from different locations of Egyptian farms for PCDD/Fs and dl-PCBs concentration intervals years (2011-2013).	84
14	Mean, minimum and maximum concentrations of PCDD, PCDF and dl-PCB congeners in cow milk (pg.g ⁻¹ fat basis) and animal feed samples (pg.g ⁻¹ dry basis) collected from different locations Egyptian dairy farms.	88
	uniterent iocations Egyptian daily faiths.	00

LIST OF TABLES

Table number	Item Name	Page
15	Fat ratio (%), ∑PCDD/Fs, ∑DLPCBs and Total TEQ concentrations in processed cow milk (pg TEQ g ⁻¹ fat basis) except the skim milk (pg TEQ g ⁻¹ fresh basis) and animal feed (pg TEQ g ⁻¹ dry basis) collected from different	0.5
16	locations Egyptian markets. Number of processed cow milk (UHT) and animal feed samples collected from different locations of Egyptian markets for PCDD/Fs and dl-PCBs concentration intervals	95
17	years (2011-2014). Mean, minimum and maximum concentrations of PCDD, PCDF and dl-PCB congeners in processed cow milk (pg.g ⁻¹ fat basis) and Animal feed samples (pg.g ⁻¹ dry basis)	96
18	collected from different locations Egyptian markets. Mean, median, minimum and maximum daily intake (DI) of PCDDs, PCDFs and dl-PCBs in processed cow milk (pg	102
19	TEQ/kg bw/day). Mean concentration of PCDDs/Fs and dl-PCBs in control, contaminated full cream and skim milk samples (pg/μl) treated by Laccase Enzyme, their fat reduction and	109
20	reduction efficiency (%) \pm SD. The total protein of the studied milk samples after treatment	115
20	by 10.8U of laccase enzyme under contact time 2hr.	119
21	The pH of the studied milk samples after treatment by 10.8U of laccase enzyme under contact time 2hr.	119

LIST OF FIGURES

Figure number	Item Name	Page
	The aborded structures of the negative substances	
2	The chemical structures of the parent substances (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans). The structures of 2,3,7,8 TCDD and 2,3,7,8 TCDF are given as an example of the parent substances. The chemical structures of the parent substances polychlorinated biphenyls (PCBs). The structure, formulas and PCBs numbers of: (A) non-ortho PCBs; (B) mono-	55
	ortho PCBs are given as an example of the parent	56
3	substances. PCDD/Fs (TEQ) congener profile comparison between	30
	cow's milk and animal feed samples. DLPCBs (TEQ) congener profile comparison between	90
4	cow's milk and animal feed samples.	90
5	Contribution percentages as TEQ for dioxin, furan, mono-	70
3	ortho PCB and non-ortho PCB in cow milk farms.	92
6	Contribution percentages as TEQ for dioxin, furan, mono-) _
O	ortho PCB and non-ortho PCB in animal feed.	92
7	PCDD/Fs (TEQ) congener profile comparison between	-
•	processed cow's milk and animal feed samples.	104
8	DLPCBs (TEQ) congener profile comparison between	
	processed cow's milk and animal feed samples.	104
9	Contribution percentages as TEQ for dioxin, furan, mono-	
	ortho PCB and non-ortho PCB in processed cow milk.	106
10	Contribution percentages as TEQ for dioxin, furan, mono-	
	ortho PCB and non-ortho PCB in animal feed.	106
11	The percent contribution of different food groups to A)	
	Egyptian consumption, B) EU consumption (FAO, 2002).	108
12	The dioxin full cream milk degradation efficiency	
	contribution by different laccase enzyme units (10.8, 7.2,	
	3.6U) under the same contact time (2hr).	116
13	The dioxin like PCBs full cream milk degradation	
	efficiency contribution by different laccase enzyme units	116
4.4	(10.8, 7.2, 3.6U) under the same contact time (2hr).	116
14	The dioxin skim milk degradation efficiency contribution	
	by different laccase enzyme units (10.8, 7.2, 3.6U) under	117
1.5	the same contact time (2hr).	117
15	The dioxin like PCBs skim milk degradation efficiency	
	contribution by different laccase enzyme units (10.8, 7.2,	117
	3.6U) under the same contact time (2hr).	117

LIST OF FIGURES

Figure number	Item Name	Page
16	Fat for full cream milk reduction efficiency contribution by different Laccase enzyme units	
	(10.8, 7.2, 3.6U) under the same contact time (2hr).	118
17	The dioxin congener pattern in full cream milk	
	reduction efficiency (%) of Laccase (10.8U).	121
18	The dioxin congener pattern in skim milk reduction	
	efficiency (%) of Laccase (10.8U).	121
19	The dl-PCB congener pattern in full cream milk reduction	
	efficiency (%) of Laccase (10.8U).	122
20	The dl-PCB congener pattern in skim milk reduction	
	efficiency (%) of Laccase (10.8U).	122

LIST OF ABBREVIATIONS

Abbreviate	Description in details
ACF	Activated carbon fiber
ADI	Acceptable daily intake
AhR	Aryl hydrocarbon receptor
ASE	Accelerated Solvent Extraction
APGC-	Atmospheric Pressure Gas Chromatography–Tandem
MS/MS	Mass Spectrometry
CRMs	Certified reference materials
COE	Carry over effects
CORs	Carry-over rates
CC-SCE	Counter current supercritical CO ₂ extraction
DRCALUX	Dioxin-responsive chemically activated luciferase gene expression
DL-PCBs	Dioxin-like polychlorinated biphenyls
EDI	Estimated daily intake
EMI	Estimated monthly intake
EHDI	Estimated human daily intakes
FAO	Food and Agricultural Organization
GC×GC-	Comprehensive two-dimensional gas chromatography
μECD	with a micro electron-capture detector
$GC \times GC$ –	A comprehensive two-dimensional gas chromatography
TOF-MS	time-of-flight mass spectrometry
GC-	Gas Chromatography/Low Resolution Mass
LRMS/MS	Spectrometry/ Mass Spectrometry
GC-HRMS	Gas Chromatography/ High Resolution Mass Spectrometr
IARC	International Agency for Research on Cancer
JECFA	Joint FAO/WHO Expert Committee on Food Additives and Contaminants
IPR	Initial Precision and Recovery
	Kinetic Dietary Exposure Model
KFDA	Korea Food and Drug Administration
LMCO	laccase-like multi-copper oxidase
LLE	Liquid-Liquid Extraction
LOD	Limit of detection
LOQ	Limit of quantitation
LOAEL	The lowest observed adverse effect level
MWI	Municipal Waste Incinerator
ND	Not detected

LIST OF ABBREVIATIONS

Abbreviate	Description in details
OLS	The ordinary least squares regressions
OPR	Ongoing Precision and Recovery
PAHs	Polycyclic Aromatic Hydrocarbons
PBDE	Poly Brominated Diphenyl Ether
PCA	Principal Component Analysis
PCDDs	Polychlorinated dibenzo-p-dioxins
PCDFs	Polychlorinated dibenzofurans
PLE	Pressurized liquid extraction
PMTMI	Provisional maximum tolerable monthly intake
ppt	Part per trillion
POPs	\mathcal{C}
PTMI	Provisional tolerable maximum monthly intake
PTs	1 2
PVC	
QA/QC	
REP	Relative potency value
SRw,rel	±
RSD	Relative standard deviation
	Scientific Committee on Food
	Subcritical water extraction
SPE	1
TCDD	1
TDI	5
TDS	5
TEFs	1 2
TEQs	
TMI	J
TWI	•
USEPA	\mathcal{E}
WHO	World Health Organization