

Postoperative Complications of Ventriculoperitoneal Shunt

Thesis

Submitted for partial fulfillment of master degree In **Neurosurgery**

By Ahmed Sabry Abdelkader M.B.B.Ch

Under Supervision of Prof.Dr./ Mohamed Ashraf Ghobashy

Professor of Neurosurgery Faculty of Medicine -Ain Shams University

Dr. / Mohamed Alaa El-Din Habib

Assist. Professor of Neurosurgery Faculty of Medicine -Ain Shams University

Dr. / Ahmed Faisal Toubar

Lecturer of Neurosurgery
Faculty of Medicine -Ain Shams University

First of all, thanks to **Allah**, the most merciful, the most graceful for his great care, support and guidance every step of the way.

I would like to express my deep gratitude to, **Prof. Dr.**Mohamed Ashraf Ghobashy Professor of Neurosurgery, Ain Shams University, for his kindness, guidance and continuous encouragement. I consider myself fortunate to work under his supervision.

It is very difficult for me to express, in words, my gratitude to **Dr. Mohamed Alaa El-Din Habib**; Assistant professor of Neurosurgery, Ain Shams University, for his time, continuous help and encouragement, his concern will always be remembered.

I'm also very grateful to **Dr. Ahmed Faisal Toubar;** Lecturer of Neurosurgery, Ain Shams University, for his support and help to have this work fulfilled.

Ahmed Sabry

Dedication

First of all I'd like to dedicate this work to my wife $\mathscr L$ my family for their continuous help $\mathscr L$ support.

And to my all professors, senior staff, and colleagues in the department of neurosurgery, Nasr City Hospital for Health Insurance, for their sympathetic help.

Last, but not least, to professor **Dr. Mohamed**Ashraf Ghobashy for giving me the honour of working under his supervision, for his valuable criticism & kind guidance.

Ahmed Sab<mark>ry</mark> 2013

CONTENTS

	Page
Acknowledgement	
List of abbreviations	I
List of figures.	II
List of Tables.	III
Introduction	1
Aim of the work	5
Review of literature:	
Functional anatomy of the CSF	6
Pathology of Hydrocephalus	22
Management.	39
Ventriculoperitoneal shunt	40
Post operative complications of V- P Shunt	51
Patients & Methods	77
Illustrative Cases	92
Results and Analysis	100
Discussion	110
Conclusion and Summary	119
References	129
Arabic Summary	141

List of Abbreviations

CHW : Cerebral hemisphere width

CNS : Central nervous system

CSF : Cerebrospinal fluid

CT : Computed tomography

ICP : Intracranial pressure

INPH : Idiopathic normal pressure hydrocephalus

ISF : Interstitial fluid

LVW : Lateral ventricles width

MRI : Magnetic resonant imaging

NPH : Normal pressure hydrocephalus

SNPH : Secondary normal pressure hydrocephalus

TCD : Transcranial Doppler

TST : Transsystolic time

VA : Ventriculoatrial

VP : Ventriculoperitoneal

List of Figures

Fig.	Title	Page
1a	Relations of the lateral ventricle (lateral, superior	9
	& anterior view).	
1b	Relations of the lateral ventricle (lateral, inferior	10
	& anterior view).	
2	Neural relationships of the different parts of the	11
	lateral ventricle	
3	Foramen of Monro	11
4	Venous landmarks for identification of the	12
	interventricular foramen of Monro	
5	Relations of the third ventricle. Anterior wall,	13
	posterior wall, roof & floor	
6	The floor of the fourth ventricle	15
7	Lateral (A) and dorsal (B) views of the ventricles	16
	and the choroid plexus	
8	Arachnoid granulations	18
9	Secretion of CSF by choroid plexus	20
10	CSF circulation	21
11	Pressure of CSF on the brain tissue	22
12	MRI brain (normal and dilated ventricles)	23
13	Normal v1ntricles &Hydrocephalic ventricles	25
14	CT brain: Normal ventricles and acute	30
	hydrocephalus.	
15	Plain skull radiograph showed multiple erosive	33
	change of skull vault.	
16	Ultrasound scan of premature neonate, showing	34
	marked hydrocephalus.	
17	CT. brain with hydrocephalus	35
18	MRI Brain (T1) axial view show dilated lateral	36
<u></u>	ventricles	<u></u>
19	MRI Brain (T2) axial view show dilated lateral	37
	ventricels.	
20	Normal optic nerve (central pinkish disk).	38

List of Figures (Cont.)

Fig.	Title	Page
21	Grade IV papillededema.	38
22	Components of the shunt system.	41
23	Fixed pressure valves.	42
24	Delta valves with siphon control.	43
25	Adjustable strata valves.	43
26	Structures of the programmable valve.	44
27	Site of incision & The pathway of the shunt.	45
28	Insertion of the proximal catheter.	47
29	Insertion of the distal catheter into the abdomen	48
30	Tunneling of the distal catheter	49
31	Outside view of insertion of the distal catheter	50
	into the abdomen.	
32	The final view after V-P shunt fixation.	50
35	CT brain, dilated ventricle & tip of V-P shunt.	54
33	CT brain, intracerebral hemorrhage.	53
34	CT brain, lt high parietal subdural hematoma.	53
36	AB view of x-ray skull (showing total	56
	intracranial migration of V-p shunt	
37	Lateral view of x-ray skull (showing total	56
	intracranial migration of V-P shunt	
38	Migrated VP shunt into the anterior abdominal	63
	wall	
39	GIT endoscopy showing perforation of the	63
	stomach with VP shunt	
40	Migrated VP shunt into the anus	64
41	Migrated VP shunt into the oral cavity	65
42	Migrated VP shunt into the scrotum	66
43	Chest radiograph with Rt. Pleural effusion due to	67
	migrated VP shunt	
44	Migrated VP shunt into the anterior abdominal	68
	wall	

List of Figures (Cont.)

Fig.	Title	Page
45	Shuntogram with VP shunt migration into the	69
	colon	
46	Pneumocephalus after colonic perforation due to	70
	VP shunt	
47	Child with huge abdominal pseudocyst after VP	72
	shunt	
48	CSF pseudocyst.	73
49	Abdominal sonography showing large cystic	73
	mass.	
50	Liver abscess due to VP shunt, arrow.	75
51	Progressive increase of head circumference.	81
52	Sloughing of skin around reservoir and proximal	82
	tube.	
53	Facial &scalp swelling and sloughing around the	83
	reservoir.	
54	Mal position of the ventricular catheter.	86
55	Mal position of the ventricular catheter.	86
56	Swelling at the neck in the course of the distal	92
	tube.	
57	CT brain showing hydrocephalic changes.	92
58	CT brain showing improvement of	93
	hydrocephalic changes.	
59	CT brain showing bilateral chronic SDH.	94
60	MRI brain showing bilateral CSDH.	94
61	CT brain showing disappearance of CSDH.	95
62	CT brain showing hydrocephalic changes.	96
63	CT brain post op showing no hydrocephalic	97
	changes.	
64	Sloughing of the skin on the distal tube.	98
65	CT brain after extraction of the Rt v-p shunt.	99

List of Tables

Table	Title	Page
1	Sex distribution	100
2	Age distribution	101
3	Symptoms /signs	101
4	Examination of shunt device	102
5	Fundus examination	103
6	Examination of anterior fontanelle	104
7	Associated pathological condition	105
8	Investigations performed in the cases studied	106
9	CT findings in the cases studied	107
10	Operative management in the cases studied	107
11	Proximal revision in the cases studied	108

Introduction

The term hydrocephalus is derived from the Greek words "hydro" meaning water and "cephalus" meaning head. As the name implies, it is a condition in which the primary characteristic is excessive accumulation of fluid in the brain. Although hydrocephalus was once known as "water on the ventricles," the "water" is actually cerebrospinal fluid (CSF) — a crystal clear fluid that surrounds the brain and spinal cord. The excessive accumulation of CSF results in an abnormal widening of the cerebral ventricles. This widening creates potentially harmful pressure on the tissues of the brain (*Aschoff et al.*, 1999).

Hydrocephalus may be congenital or acquired. Congenital hydrocephalus is present at birth and may be caused by either events or influences that occur during fetal development, or genetic abnormalities. Acquired hydrocephalus develops at the time of birth or at some point afterward (*Rekate and Cherney*, 1996).

Hydrocephalus may also be communicating or non-communicating. Communicating hydrocephalus occurs when the flow of CSF is blocked after it exits the ventricles while Non-communicating hydrocephalus "obstructive" hydrocephalus occurs when the flow of CSF is blocked along one or more of the narrow passages connecting the ventricles (*David and Nalin*, 2006).

Symptoms of hydrocephalus vary with age, disease progression, and individual differences in tolerance to the condition. (*David and Nalin*, 2006).

In infancy, the most obvious symptom of hydrocephalus is often a rapid increase in head circumference.

Introduction and Aim of The Work

Other symptoms may include vomiting, sleepiness, irritability, downward deviation of the eyes and seizures.

Older children and adults may experience different symptoms because their skulls cannot expand to accommodate the buildup of CSF. Symptoms may include headache followed by vomiting, nausea, papilledema, blurred or double vision, disturbed conscious level, problems with balance, poor coordination, gait disturbance, urinary incontinence, slowing or loss of developmental progress, lethargy, drowsiness, irritability, or other changes in personality or cognition including memory loss(*Rekate and Cherney*, 1996).

Hydrocephalus is diagnosed through clinical neurological evaluation and by using cranial imaging techniques such as ultrasonography, computed tomography (CT), magnetic resonance imaging (MRI), or pressuremonitoring techniques.

Hydrocephalus is almost always treated successfully with surgical diversion of CSF pathway (either by third ventriculostomy or placement of a shunt system) or treatment of the cause as excision of underlying tumours (*Rush et al.*, 1985; *Chris et al.*, 2003).

Ventriculoperitoneal shunt is one of most commonly performed neurosurgical procedures for the hydrocephalus. management of A wide of range complications, neurological as well as nonneurological, has been reported following this procedure.

Complications can be encountered either in the immediate perioperative or in postoperative follow-up period. VP shunt-related complications may occur anywhere along its course from the ventricle cranially to the peritoneal cavity caudally.

Introduction and Aim of The Work

Commonly encountered complications include: mechanical obstruction of distal peritoneal catheter omentum or other structures leading to shunt malfunction, formation of abdominal pseudo cyst, spontaneous bowel perforation, intestinal obstruction, inguinal hernia development of liver abscess. Rare complications consist of migration of the peritoneal catheter into the stomach, gallbladder, urinary bladder, vagina, liver, bowel, colon, scrotum and diaphragm. However, extrusion of components of shunt apparatus is very unusual (*Metin et al.*, 2007).

Shunt systems are not always perfect devices. Complications may include infections, obstructions, and the need to lengthen or replace the catheter. Generally, shunt systems require monitoring and regular medical follow up. When complications occur, the shunt system usually requires some type of revision.

Although the early symptoms of shunt malfunction or infection in children: fever, irritability are similar to many childhood illnesses; we must determine the symptoms associated with shunt failure in a particular individual. If we suspect there is a problem with the shunt, it is wise to have it checked rather than ignore it. It is better to have a false alarm checked than to leave it unattended.

Remember, although shunt complications can be very serious and become life threatening, they can almost always be treated successfully when they are discovered early.

The prognosis for individuals diagnosed with hydrocephalus is difficult to predict, although there is some correlation between the specific cause of the hydrocephalus and the outcome. Prognosis is further complicated by the presence of associated disorders, the timeliness of diagnosis, and the success of treatment. The degree to which relief of CSF pressure following shunt surgery can minimize or reverse

Introduction and Aim of The Work

damage to the brain is not well understood (*Tamburrini G*; et al., 2008)

Affected individuals and their families should be aware that hydrocephalus poses risks to both cognitive and physical development. However, many children diagnosed with the disorder benefit from rehabilitation therapies and educational interventions and go on to lead normal lives with few limitations. Treatment by a multidisciplinary team of medical professionals, rehabilitation specialists, and educational experts is critical to a positive outcome. Left untreated, progressive hydrocephalus may be fatal.

Ventriculoperitoneal shunt operation should be done just for patients can not be treated either by medical or surgical methods as before, due to its frequent and variable serious complications.

Neurosurgeons hope that future has solutions for treatment of hydrocephalus other than ventriculoperitoneal shunt.

Aim of The Work

The aim of this work is to document and study the complications in individuals with hydrocephalus and managed by surgical insertion of a V-P shunt in the period from October 2011 to September 2012.