Study of the Expression of Estrogen, Androgen and Glucocorticoid Receptors in Pregnant and Non Pregnant Females with Recent Striae Distensae

Thesis

Submitted for partial fulfillment of Master Degree in Dermatology, Venereology and Andrology

Вy

Eman Mohamed Amen

M.B.B.Ch Faculty of Medicine - Ain Shams University

Supervised by Dr. Sahar El Sayed Ahmed youssef

Assistant Professor of Dermatology, Venereology and Andrology Faculty of Medicine - Ain Shams University

Dr. Manal Hassan Mousa

Professor of Histology
Faculty of Medicine - Ain Shams University

Dr. Ekramy Ahmed El-Khateeb

Lecturer of Dermatology, Venereology and Andrology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2012

سورة البقرة الآية: ٣٢

First and foremost, I always feel indebted to "Allah" the most gracious, the most merciful and whose magnificent help was the main factor in accomplishing this work.

Words cannot express the depth of my gratitude to **Prof. Dr. Sahar EL-Sayed Ahmed,** Assisstant Professor of Dermatology, Venereology and Andrology, Faculty of Medicine, Ain Shams University, for her valuable suggestions, generous assistance, kind support and continuous encouragement throughout this work.

My great appreciation and thanks to **Dr. Ekramy Ahmed El-Khateeb** Lecturer of Dermatology, Venereology and Andrology, Faculty of Medicine, Ain Shams University, for his help, kind support, valuable supervision.

Finally, I do appreciate the active participation, guidance and advice. Of **Prof. Dr. Manal Hassan Mousa**, Professor of Histology, Ain-Shams University.for her kind support to achieve this work.

List of Contents

T	Title Page		
♦	List of Abbreviations	I	
♦	List of Tables	III	
♦	List of Figures	V	
♦	Introduction	1	
♦	Aim of the Work	4	
♦	Review of Literature:		
	o (Chapter 1) Striae Distensae Overview	5	
	-Clinical picture	5	
	- Causes	11	
	- Pathogenesis	15	
	- Histopathology	18	
	- Treatment	20	
	o (Chapter2) Hormonal Factor and SD	27	
	-Estrogen receptors	31	
	-Androgen receptors	37	
	-Glucocorticoid receptors	42	
	-Steroid Hormones and SD	47	
♦	Subjects and Methods	56	
♦	Results	65	
♦	Discussion	97	
♦	Summary and Conclusion	105	
♦	Recommendation	108	
♦	References	109	
♦	Arabic Summary		

List of Abbreviations

Abbrev.

ACE	3-amino -9-ethyl carbozle
AF1	···Activation function1
AF2	···Activation function2
AP1	···Activation protein 1
AR	···Androgen receptor
BMI	···Body mass index
DAB	···Diaminobenzadine
DBD	·· DNA binding domain
DEJ	···Dermo-epidermal junction
DHEA	··· Dehydroepiandrosterone
5α-DHT	···5a-Dihydrotestosterone
ECM	···Extracellular matrix
ER	···Estrogen receptor
ERE	···Estrogen response element
ERa	···Estrogen receptor alpha
ER β	···Estrogen receptor beta
GA ······	···Glycolic acid
GCS	···Glucocorticoids
GR	···Glucocorticoid receptor
GRE	···Glucocorticoid response element
HBD	···Hormone binding domain
Н. & Е	···Hematoxylin and Eosin

HsPs.....Heat shock protein

K ······Keratin

KDa ·····Kilo Dalton

LBDLigand binding domain

MAPKMitogen-activated protein kinase

MMPSMatrix metalloproteinases

mRNA Messenger ribonucleic acid

MG.....multigravida

Nd:YAG ... Neodymium Yttrium Aluminium Garnet laser

NSNon- significant

NTDN-terminal domain

NG.....nulligravida

P ·····Phosphoralation

PBS.....Phosphate puffered saline

PDLPulsed dye laser

SDStriae distensae

T·····Testosterone

TCATrichlor-acetic acid

TIMPS..... Tissue inhibitors of metalloproteinas

UVA Ultra violet A

UVB Ultra violet B

List of Table

Table	Title	Page
Table (1)	Clinical classification of striae distensae	7
Table (2)	Different causes for development of straie	14
Table (3)	Different treatment modalities and their mode	21
	of action	<i>L</i> 1
Table (4)	Comparison between different steroid	55
	receptors	33
Table (5)	Description of receptor expression among	87
	control,gravid and nulligravida	07
Table (6)	Comparison between NG, Multi-gravida and	
	control as regard non-lesional ER, AR and GR	88
	in epidermis and dermis	
Table (7)	Post Hoc Tests for pairwise comparison	
	between study groups as regard non-lesional	89
	ER, AR and GR in epidermis and dermis	
Table (8)	Comparison between study groups as regard	
	lesional ER, AR and GR in epidermis and	90
	dermis	
Table (9)	Post Hoc Tests for pairwise comparison	
	between study groups as regard lesional ER,	91
	AR and GR in epidermis and dermis	
Table (10)	Comparison between lesional and non lesional	
	ER, AR and GR in epidermis among NG	93
	cases	
Table (11)	Comparison between lesional and non lesional	94
	ER, AR and GR in dermis among NG cases	27

List of Table (Cont.)

Table	Title	Page
Table (12)	Comparison between lesional and non	
	lesional ER, AR and GR in epidermis	95
	among multigravida cases	
Table (13)	Comparison between lesional and non	
	lesional ER, AR and GR in dermis among	96
	multigravida cases	

List of Figures

Figure	Title	Page
Fig. (1)	Striae rubra	7
Fig. (2)	Striae alba in darker skin (striae nigra)	8
Fig. (3)	Systemic steroid induced-widespread	
	symmetric linear and reticulated violaceous	
	atrophic striae	8
Fig. (4)	Striae gravidarum	9
Fig. (5)	Potential distribution and direction of striae	
	distensae	10
Fig. (6)	The amount of glycosaminoglycans in normal	
	skin and striae	16
Fig. (7)	Histopathology of striae distensae	19
Fig. (8)	Elastic stain of SD	19
Fig. (9)	Hormone receptors detected as being active in	
	human skin cells	30
Fig. (10)	Mechanism of action of ERS	31
Fig. (11)	The molecular structure of the two estrogen	
	receptors	32
Fig. (12)	Nuclear initiated estrogen signals	34
Fig. (13)	Immunohistochemical localization of ER in	
	the human scalp	36
Fig. (14)	Domain structure of the human androgen	
	receptor	37
Fig. (15)	Androgen action	39
Fig. (16)	Normal function of the AR	41
Fig. (17)	Organization of the GR protein	44

List of Figures (Cont.)

Figure	Title	Page
Fig. (18)	Diagram illustrating the activation of	
	glucocorticoid receptors (GRs)	46
Fig. (19)	Potential effect of estrogens on wound healing	49
Fig. (20)	Skin biopsy of control stained with H&E	66
Fig. (21)	Skin biopsy from group IIa stained with H&E	67
Fig. (22)	Skin biopsy from group IIb stained with H&E	68
Fig. (23)	Skin biopsy of control stained with Mallory	
	stain	69
Fig. (24)	Skin biopsy from group IIa stained with	
	Mallory stain	70
Fig. (25)	Skin biopsy from group IIIb stained with	
	mallory stain	71
Fig. (26)	ER beta expression in skin of control	72
Fig. (27)	ER beta expression in skin of group IIa	74
Fig. (28)	ER beta expression in skin of group IIb	74
Fig. (29)	ER beta expression in skin group IIIa	76
Fig. (30)	ER beta expression in skin group IIIb	76
Fig. (31)	AR expression in skin of group I	77
Fig. (32)	AR expression in group IIa	79
Fig. (33)	AR expression in group IIb	79
Fig. (34)	AR expression in skin of group IIIa	81
Fig. (35)	AR expression in skin of group IIIb	81
Fig. (36)	GR expression in skin of group I	82
Fig. (37)	GR expression in skin in group IIa	84
Fig. (38)	GR expression in skin in group IIb	84

List of Figures (Cont.)

		_
Figure	Title	Page
Fig.(39)	GR expression in group IIIa	86
Fig.(40)	GR expression in group IIIa	86
Fig.(41)	comparison between study groups as regard	
	non-lesional ER, AR and GR in epidermis	89
Fig.(42)	comparison between study groups as regard	
	non-lesional ER, AR and GR in dermis	90
Fig.(43)	Comparison between NG, Multi-gravida and	
	control as regard lesional ER, AR and GR in	
	epidermis	92
Fig.(44)	Comparison between NG, Multi-gravida and	
	control as regard lesional ER, AR and GR in	
	dermis	92
Fig.(45)	Comparison between lesional and non lesional	
3 ()	ER, AR and GR in epidermis among NG cases	93
Fig. (46)	Comparison between lesional and non lesional	
	ER, AR and GR in dermis among NG cases	94
Fig. (47)	Comparison between lesional and non lesional	
	ER, AR and GR in epidermis among	
	multigravida cases	95
Fig. (48)	Comparison between lesional and non lesional	
	ER, AR and GR in dermis among	
	multigravida cases	96

I- Introduction

Striae distensae are well defined, linear atrophic skin lesions secondary to connective tissue abnormalities (*Cambazard and Michel*, 2006).

The commonest sites are the outer aspect of the thighs and lumbosacral region in males, and thighs, upper arms, buttocks and breasts in females. In the early stages, striae may appear pink to red (striae rubra), which over time become atrophic and attain white color (striae alba) (*Burrow and Lovell*, 2004). They can also be distinguished into four distinct types; namely, striae alba, striae rubra, striae caerulae, and striae nigra. Melanin pigmentary system may have a role in various colors of striae distensae (*Hermanns and Piérard*, 2006).

Multiple treatment modalities are available including tretinoin, glycolicacid, pulsed dye laser, CO2 laser, Intensed pulsed laser, excimer laser, and others (*Elsaie et al.*, 2009).

The pathogenesis is still unknown, but probably relates to changes in the structures that provide skin with its tensile strength and elasticity. Such structures include components of the extracellular matrix (ECM), like fibrillin, elastin, and collagen (*Watson et al.*, 1998; *Thomas and Liston*, 2004).

They may be caused through loss of fibroblast synthesis capability and abnormalities to connective tissue, in addition to significantly decreased collagen, elastin, and fibrilin fibers. They may develop as an end result of various physiologic states, including pregnancy, adrenocortical excess and changes in body habitus, as seen in rapid weight change. A genetic predisposition is also presumed (*Viennet et al.*, 2005; cambazard and Michel, 2006).

Striae are seen in 90% of pregnant women due to a combination of hormonal factors along with increased lateral stress on connective tissue (*Lawley and Yancey*, 2003). The action of estrogens in the skin is well-known to increase the thickness and elastic fibers in the papillary layer (*Punnonen et al.*, 2003), increase of dermal collagen (*Sauerbronn et al.*, 2000), interfere in the mechanism of wound repair and extracellular matrix reorganization (*Zecchin et al.*, 2005), and participate with androgens in skin homeostasis (*Mills et al.*, 2005; *Gilliver et al.*, 2003).

Under the physiologic conditions, glucocorticoids may regulate the synthesis of glycosaminoglycans (*Smith*, *1988*), while most relevant adverse effect of glucocorticoid therapy is skin atrophy through suppression of cutaneous cell proliferation and protein synthesis, which concerns keratinocytesas well as

dermal fibroblasts resulting in depressed collagen turn over. They may also intervene in regulation of proinflammatory cytokines, growth factors, matrix proteins, and matrix proteases which have impact on wound healing (*Schäcke et al.*, 2002).

Some hormones, like estrogen, relaxin, and adrenocortical hormones are postulated to decrease the adhesiveness between collagen fibers and increase ground substance, which results in the formation of striae in areas of stretching (*Thomas and Liston*, 2004).

Aim of the work

The aim of this thesis is to study the expression of estrogen, androgen and glucocorticoid receptors in recent straie distensae in pregnant as well as non pregnant females to explore the proposed role of hormonal factor in the development of straie.