MICROPARTICLES IN SICKLE CELL DISEASE AND THALASSEMIA MAJOR IN RELATION TO HYPERCOAGULABLE STATE AND VASCULAR COMPLICATIONS

Thesis

Submitted for Partial Fulfillment of Master Degree of **Pediatrics**

Presented By

Asmaa Abdel Hamid Hassan

M.B., B.Ch. (2005)

Under Supervision of

Prof. Dr. / Azza Abdel Gawad Tantawy

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Dr. / Amira Abdel Moneam Adly

Assistant Professor of Pediatrics Faculty of Medicine -AinShamsUniversity

Dr. / Eman Abdel Rahman Ismail

Assistant Consultant of Clinical Pathology Faculty of Medicine- Ain Shams University

Faculty of Medicine Ain Shams University 2012

First of all praise and thanks to **ALLAH** providing me with time and effort to accomplish this thesis.

It is a pleasure to express my deepest thanks and profound respect to my honored professor, **Professor Dr. AzzaAbd El-Gawad Tantawy**, Professor of Pediatrics, Faculty of medicine, Ain Shams University for his continuous encouragement and support that he gave me throughout the whole work. It has been an honor and a privilege to work under his generous supervision.

I wish to express my deep gratitude to **Dr. Amira Abd El Monem**Adley, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams

University for her enthusiasm, keen supervision, continuous encouragement and meticulous guidance and follow up throughout this work.

A special tribute and cordial thanks are paired to **Dr. Eman Abdel Rahman Ismail**, Assistant Consultant of Clinical Pathology, Faculty of Medicine, Ain Shams University for her authentic guidance, meticulous supervision. She gave me a lot of her time, effort and experience to accomplish this work.

I want to take this chance to express my thanks, respect and love to all professors and medical staff of **Pediatric Cardiology Unit** for their warm support, help and encouragement **Dr. Mevine Mandouh**, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her sincere contribution in this work with her time and effort.

At last but certainly not least, my special thanks to my patients and their families for their cooperation without which this work would have never been accomplished.

Asmaa Abdel-Hamid Hassan.

Firstly, I wound to dedicate this work to the soul of my **Father**, GOD pless him

I also would like to thank My Mother for her help, support and pushing me forward all the time from the A, B, C to the M.Sc.

I also would like to thank My Sisters (Marwa and Zahraa) and My Brothers (Mohamed and Ahmed) for all their patience, love, and support which made this work possible.

Last but not least I would like to express my deep thanks and gratitude to my Brother in Law **Dr. Hany Massif**, for his time, support and supervison when I need

LIST OF CONTENTS

Title	Page No.
Introduction	1
Aim of the work	4
Review of Literature	
Sickle cell disease	5
Thalassemia major	19
Cardiopulmonary complications in chronic hemoly anemia; sickle cell disease and thalassemia	
Investigations of chronic hemolytic anemia; sickle disease and thalassemia	
Treatment of chronic hemolytic anemia; sickle of disease and thalassemia	
Hypercoagulability and thrombotic complications chronic hemolytic anemia; role of microparticles	
Subjects and methods	125
Results	134
Discussion	172
Summary	187
Conclusions	191
Recommendations	192
References	193
Appendix	213
Arabic Summary	

LIST OF TABLES

Tab. No.	Title	Page No.
Table (1):	Different forms and variants of sickle cell disease	12
Table (2):	The composition of embryonic, fetal and adult hemoglobins	
Table (3):	Pharmacokinetics and clinical characteristics of three iron chelators	57
Table (4):	Markers for cell-derived microparticles	85
Table (5):	Cell-derived microparticles in some diseases	105
Table (6):	Descriptive demographic and clinical data of the studied patients	135
Table (7):	Descriptive laboratory data of the studied patients	136
Table (8):	Comparison between demographic data and microparticles levels between patients and control group	137
Table (9):	Comparison between the studied groups as regards clinical data	139
Table (10):	Comparison between the studied groups as regards laboratory data	140
Table (11):	Echocardiographic Features of the studied patients and healthy controls	141
Table (12):	PMPs and ErMPs levels in relation to clinical characteristics of sickle cell patients	142
Table (13):	Correlation between PMPs and ErMPs and the clinical and laboratory parameters of sickle cell patients	145

LIST OF TABLES (Cont...)

Tab. No.	Title	Page No.
Table (14):	Multiregression linear analysis of the relation between PMPs and clinical and laboratory variables in sickle cell disease patients	146
Table (15):	Multiregression linear analysis of the relation between ErMPs and clinical and laboratory variables in sickle cell disease patients	147
Table (16):	PMPs and ErMPs levels in relation to clinical characteristics of β-thalassemia patients	152
Table (17):	Correlation between PMPs and ErMPs levels and the clinical and laboratory parameters of β-thalassemia patients	155
Table (18):	Multiregression linear analysis of the relation between PMPs and clinical and laboratory variables in patients with β -thalassemia major	156
Table (19):	Multiregression linear analysis of the relation between ErMPs and clinical and laboratory variables in patients with β -thalassemia major	157
Table (20):	Correlation between aortic distensibility and aortic stiffness and the clinical and laboratory parameters of the studied patients	163
Table (21):	Multiregression linear analysis of the relation between aortic stiffness and other variables in sickle cell disease patients	164
Table (22):	Multiregression linear analysis of the relation between aortic distensibility and other variables in sickle cell disease patients	165

LIST OF TABLES (Cont...)

Tab. No.	Title	Page No.
Table (23):	Multiregression linear analysis of the relation between aortic stiffness and other variables in β-thalassemia patients	166
Table (24):	Multiregression linear analysis of the relation between aortic distensibility and other variables in β-thalassemia patients	166

LIST OF FIGURES

Fig. No.	Title	Page No.
Figure (1):	Pattern of sickle cell disease inheritance	8
Figure (2):	Different amino acid sequences of N-terminal peptidesofß-chain of different types of hemoglobin.	8
Figure (3):	Normal and sickle cell	9
Figure (4):	Shortened index finger of left hand and right middle finger as result of hand foot syndrome	15
Figure (5):	Small pale (hypochromic) abnormally-shaped red blood cells of thalassemia major	20
Figure (6):	Why it was called thalassemia	21
Figure (7):	Thalassemic patient with the characteristic features.	27
Figure (8):	Thalassemic patient with hepatospleno- megaly	28
Figure (9):	Pulmonary manifestations.	30
Figure (10):	Sickle erythrocytes. Peripheral blood smear from a patient with SCD obtained during a routine clinic visit	39
Figure (11):	Lateral skull radiograph	41
Figure (12):	Sites of desferal infusion	59
Figure (13):	Schematic representation of pathophysiological mechanisms leading to coagulation activation in sickle cell disease and other hemolytic anemias	74
Figure (14):	Pathophysiology of hypercoagulable state and platelet activation in thalassaemia and sickle cell disease (SCD)	76

Fig. No.	Title	Page No.
Figure (15):	Surface markers of MPs released by different vascular cells	78
Figure (16):	Formation of microparticles	81
Figure (17):	Schematic representation of the resting cytoskeleton. Calcium is stored in the endoplasmic reticulum (ER)	82
Figure (18):	Schematic representation of functions attributed to microparticles	91
Figure (19):	Proposed roles of platelet-derived and monocyte derived MPs in hemostasis and thrombosis	95
Figure (20):	Role of TF-positive MPs in microvascular and venous thrombosis	96
Figure (21):	Representative diagram describing microparticle-evoked effects, depending on their cellular origin, in the vascular system	97
Figure (22):	Forward scatter (FS) and side scatter (SS) analysis of microparticles	132
Figure (23):	PMPs and ErMPs in sickle cell and thalassemia patients compared with healthy controls	138
Figure (24):	PMPs in sickle cell disease patients with and without sickling crisis.	143
Figure (25):	ErMPs in sickle cell disease patients with and without sickling crisis.	143
Figure (26):	PMPs in sickle cell disease patients with and without hydroxyurea therapy.	144
Figure (27):	ErMPs in sickle cell disease patients with and without hydroxyurea therapy	144

Fig. No.	Title	Page No.
Figure (28):	Negative correlation between PMPs and hemoglobin in sickle cell disease patients	148
Figure (29):	Negative correlation between PMPs and HbF in sickle cell disease patients	148
Figure (30):	Positive correlation between PMPs and D-dimer levels in sickle cell disease patients	149
Figure (31):	Negative correlation between ErMPs and hemoglobin in sickle cell disease patients	149
Figure (32):	Positive correlation between ErMPs and HbS in sickle cell disease patients	150
Figure (33):	Positive correlation between ErMPs and lactate dehydrogenase in sickle cell disease patients (r=0.973, p<0.001)	150
Figure (34):	PMPs in β-thalassemia patients with and without splenectomy	153
Figure (35):	ErMPs in β-thalassemia patients with and without splenectomy.	153
Figure (36):	PMPs in β-thalassemia patients with and without compliance to therapy	154
Figure (37):	PMPs in β-thalassemia patients with and without compliance to therapy	154
Figure (38):	Positive correlation between PMPs and disease duration in patients with β-thalassemia major	158
Figure (39):	Positive correlation between PMPs and HbF in patients with β-thalassemia major.	158

Fig. No.	Title	Page No.
Figure (40):	Positive correlation between PMPs and D-dimer in patients with β-thalassemia major	159
Figure (41):	Positive correlation between ErMPs and transfusion index in patients with β-thalassemia major	159
Figure (42):	Negative correlation between ErMPs and hemoglobin in patients with β-thalassemia major	160
Figure (43):	Positive correlation between ErMPs and indirect bilirubin in patients with β-thalassemia major	160
Figure (44):	Positive correlation between ErMPs and serum ferritin in patients with β-thalassemia major	161
Figure (45):	Positive correlation between PMPs and aortic stiffness in sickle cell disease patients	167
Figure (46):	Negative correlation between PMPs and aortic distinsibility in sickle cell disease patients	167
Figure (47):	Positive correlation between ErMPs and aortic stiffness in sickle cell disease patients	168
Figure (48):	Negative correlation between ErMPs and aortic distinsibility in sickle cell disease patients	168
Figure (49):	Negative correlation between aortic distinsibility and aortic stiffness in sickle cell disease patients	169
Figure (50):	Positive correlation between PMPs and aortic stiffness in patients with β -thalassemia major patients	169

Fig. No.	Title	Page No.
Figure (51):	Negative correlation between PMPs and aortic distinsibility in β-thalassemia major patients	170
Figure (52):	Positive correlation between ErMPs and aortic stiffness in β -thalassemia patients	170
Figure (53):	Negative correlation between ErMPs and aortic distinsibility in β-thalassemia patients	171

LIST OF ABBREVIATIONS

Abbrev.	Full term
ACS	Acute chest syndrome
AOD	Aortic diastolic diameter
AOS	Aortic systolic diameter
apl	Antiphospholipid antibodies
BM	Bone marrow
DBP	Diastolic blood pressure
ECs	Endothelial cells
ELISA	Enzyme linked immunosorbant assay
EMPs	Endothelial microparticles
ErMPs	Erythrocyte microparticles
G6PD	Glucose 6 phosphate dehydrogenase
Hb AS	Sickle Cell Trait
Hb F	Fetal Hemoglobin
Нь	Hemoglobin
HbA2	Hemoglobin A2
HbS	Hemoglobin S
HBV	Hepatitis B virus
HCV	Hepatitis E virus
HU	Hydroxyurea
LDH	Lactate Dehydrogenase
LV	Left Ventricle
MCH	Mean Corpuscular Hemoglobin
MCHC	Mean Corpuscular Hemoglobin Concentration
MPs	Microparticles
NO	Nitric oxide
PH	Pulmonary Hypertension
PMPs	Platelet microparticles

LIST OF ABBREVIATIONS (Cont...)

INTRODUCTION

halassaemia and sickle cell disease (SCD) represent the most common forms of hereditary haemolytic anaemia and result from a partial or complete lack of synthesis of one of the major α- or β-globin chains of haemoglobin A or from a single amino acid mutation of the β-globin chain, respectively (Weatherall, 2001; Fucharoen and Winichagoon, 2002; Ataga et al., 2007). Unmatched globin chains are less stable and bind to the cytoplasmic surface of the red blood cell (RBC) membrane where they produce oxidative damage, which might be partly responsible for the membrane rigidity (Schrier, 2002) with increased aggregability of RBCs (Helley et al., 1996; Pattanapanyasat et al., 2004).

SCD is characterized by chronic hemolysis and recurrent ischemia due to micro-vascular occlusion following the adhesion of erythrocytes and leukocytes to the vascular endothelium (Stuart and Nagel, 2004). Increased risk of cardiovascular disease has been reported in SCD and thalassemia (Michaeli et al., 1992; Morris et al., 2003; Acar et al., 2003). An abnormal response after transient arterial occlusion has been reported in homozygous sickle cell anemia (Belhassen et al., 2001). Structural and functional changes of the arteries are important features in cardiovascular disease (O'Rourke, 1995). These structural changes may translate functionally into alteration of arterial stiffness in vivo. Arterial stiffness is an important mechanical property, because it is related to vascular impedance