Impact of Dopamine Infusion on Renal Function in Hospitalized Heart Failure Patients

Essay
Submitted for Partial Fulfillment of Master Degree
in Intensive Care

Presented By **Emad El Din Mohammed Abd El Naby** *M.B.B.CH*

Supervised by **Prof. Dr. Ahmed Abd El Aala El Shawarby**

Professor of Anaesthesia and Intensive Care Faculty of Medicine- Ain Shams University

Dr. Ahmed Mohammed Shafik

Assistant Professor of Anaesthesia and Intensive Care Faculty of Medicine- Ain Shams University

Dr. Sahar Mohammed Talaat

Lecturer of Anaesthesia and Intensive Care Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2013

سورة البقرة الآية: ٣٢

First of all, great thanks to God who enabled us to complete this work.

No words can express my deepest appreciation and profound respect to Prof. Dr. Ahmed Abd El Aala El Shawarby, Professor of Anaesthesia and Intensive Care, Ain Shams University, for his continuous guidance, support and constructive criticism through the work. He has generously devoted much of his time and his effort for planning and supervision of this study.

Also, my profound gratitude to Dr. Ahmed Mohammed Shafik, Assistant Professor of Anaesthesia and Intensive Care, Ain Shams University, for his kind supervision and support. It was great honor to work under his supervision.

Also, my profound gratitude to **Dr. Sahar Mohammed Talaat**, Lecturer of Anaesthesia and Intensive Care, Ain
Shams University for her kind supervision and support. It
was great honor to work under her supervision.

Lastly, I don't forget my father and my mother, the best helper for me, their full support, prayers and wishes were a great motive to accomplish this work. My deepest gratitude to them and thanks will never appreciate what I owe them.

Emad El Din Mohammed

Contents

Page
List of Abbreviations
List of TablesVI
List of FiguresVIII
Introduction1
Aim of the Work4
Review of Literature
- Chapter (1): Pathophysiology and management of acute heart failure5
- Chapter (2): Cardiorenal Syndrome69
- Chapter (3): Pharmacology of dopamine97
- Chapter (4): Impact of Dopamine Infusion on Renal Function in Hospitalized Heart Failure Patients
Summary
References
Arabic Summary

List of Abbreviations

Abb.	Meaning
AC	Adenyl cyclase
ACE	Angiotensin converting enzyme
ACEis	Angiotensin-converting enzyme inhibitors
ACRS	Acute cardiorenal syndrome
ACS	Acute coronary syndromes
ADHERE	Acute decompensated heart failure national
	registry
ADHF	Acute decompensated heart failure
AF	Atrial fibrillation
AHF	Acute heart failure
AKI	Acute kidney injury
AMI	Acute myocardial infarction
AR	Adrenergic receptor
ARBs	Angiotensin receptor blockers
AT II	Angiotensin II
AT1R	Angiotensin type 1 receptor
AT2R	Angiotensin type 2 receptor
BEST	Beta-blocker Evaluation of Survival Trial
BNP	Brain natriuretic peptide
BP	Blood pressure
BUN	Blood urea nitrogen
\mathbf{BW}	Body weight
CABG	Coronary artery bypass grafting
CAD	Coronary artery disease

Abb.	Meaning					
CAMP	Cyclic adenosine monophosphate					
CBC	Complete blood count					
CHF	Congestive heart failure					
CKD	Chronic kidney disease					
CK-MB	Creatine kinase MB					
CO	Cardiac output					
COPD	Chronic obstructive pulmonary disease					
CPO	Cardiogenic Pulmonary Edema					
Cr	Creatinine					
CRF	Corticotrophin-releasing factor					
CVP	Central venous pressure					
CXR	Chest radiograph					
CysC	Cystatin C					
DA	Dopamine					
DIG	Digitalis Investigation Group					
DVT	Deep venous thrombosis					
ECG	Electrocardiogram					
ED	Emergency department					
EF	Ejection fraction					
eGFR	Estimated glomerular filtration rate					
EMPHASIS	The Eplerenone in Mild Patients					
	Hospitalization And Survival Study					
EPHESUS	Eplerenone Post-Acute Myocardial					
	Infarction Heart Failure Efficacy and					
	Survival Study					
ERPF	Effective renal plasma flow					

Abb.	Meaning					
ESC	European Society of Cardiology					
ESCAPE	Evaluation Study of Congestive Heart					
	Failure and Pulmonary Artery					
	Catheterization Effectiveness					
ETT	Endotracheal tube					
FF	Filtration fraction					
FFAs	Free fatty acids					
FIRST	Flolan International Randomized Survival					
	trial					
GFR	Glomerular filtration rate					
GPCRs	G protein-coupled receptors					
HDF	High-dose furosemide					
HF	Heart Failure					
HR	Heart rate					
IABP	Intra-aortic balloon pump					
IAP	Intra-abdominal pressure					
ICU	Intensive care unit					
IV	Intravenous					
JVD	Jugular venous distention					
JVP	Jugular venous pressure					
KIM-1	Kidney injury molecule-1					
LDFD	Low-dose furosemide combined with low-					
	dose dopamine					
L-DOPA	L-dihydroxyphenylalanine					
LMWH	Low molecular weight heparin					
LV	Left ventricular					

Abb.	Meaning					
LVEDP	Left ventricle end diastolic pressure					
LVH	Left ventricle hypertrophy					
MAP	Mean arterial blood pressure					
MI	Myocardial infarction					
MR	Mitral regurgitation					
MSNs	Medium spiny neurons					
NAG	N-acetyl-beta-D-glucosaminidase					
NCC	Sodium chloride co-transporter					
NES	Nesiritide					
NGAL	Neutrophil gelatinase-associated lipocalin					
NHE1	Sodium hydrogen exchanger type 1					
NHE3	Sodium hydrogen exchanger type 3					
NIV	Non-invasive Ventilation					
NSTEMI	Non ST-segment elevation myocardial					
	infarction					
NTG	Nitroglycerin					
NTP	Nitroprusside					
NT-pro BNP	N-terminal probrain natriuretic peptide					
NYHA	New York Heart Association classification					
	classes for HF					
PCG	Pressure in the glomerular capillary					
PCI	Percutaneous coronary intervention					
PCWP	Pulmonary capillary wedge pressure					
PE	Pulmonary embolism					
PLA2	Phospholipase A2					
PLC	Phospholipase C					

Abb.	Meaning				
PND	Paroxysmal nocturnal dyspnea				
PSF	Preserved systolic function				
PTP	Proximal tubular pressure				
RAAS	Renin angiotensin aldosterone system				
RALES	Randomized Aldactone Evaluation Study				
RARs	Rapidly adapting stretch receptors				
RAS	Renin angiotensin system				
RBF	Renal blood flow				
ROS	Reactive oxygen species				
RVR	Rapid ventricular response				
RyR	Ryanodine receptor				
SBP	Systolic blood pressure				
SERCA	Sarcoplasmic reticulum calcium ATPase				
SL	Sublingual				
SNS	Sympathetic nervous system				
SR	Sarcoplasmic reticulum				
STEMI	ST-segment elevation myocardial				
	infarction				
SVR	Systemic vascular resistance				
The UNLOAD	Ultrafiltration vs. Intravenous Diuretics for				
trial	Patients Hospitalized with Acute				
	Decompensated Heart Failure trial				
UF	Ultrafiltration				
UFH	Unfractionated heparin				
VMAC	Vasodilation in the management of acute				
	congestive HF				

Abb.	Meaning			
VO2	Peak oxygen consumption per unit time			
VS	Vital signs			
WRF	Worsening renal function			

List of Tables

Tab.	le No. Page
(1)	Comparison between two different clinical and pathophysiological profiles of acute heart failure
(2)	Signs and Symptoms of Congestion in HF 21
(3)	Clinical classification of acute heart failure in the ESC guidelines
(4)	Clinical profiles of AHF
(5)	Inotropic agents currently available 50
(6)	Inotropic agents under investigation 57
(7)	Use of vasodilators. Indications and dosing of IV vasodilators in acute HF
(8)	Predictors of cardiorenal syndrome69
(9)	Causes of cardiorenal syndrome71
(10)	Published beneficial and detrimental effects of dopamine in the respiratory system

list of Figures

Figu	ure No. Page
(1)	Mechanisms of myocardial damage in patients with acute heart failure (top) and potential effects of traditional inotropic agents (bottom) LVEDP: Left ventricle end diastolic pressure VO2: peak oxygen consumption per unit time
(2)	Diagnosis of AHF20
(3)	BUN, blood urea nitrogen; VS, vital signs31
(4)	Normotensive AHFS pathway. Cr, creatinine; ICU, intensive care unit; LVH, Left ventriclf hypertrophy33
(5)	Hypotensive AHFS pathway. NES, nesiritide; NTG, nitroglycerin; NTP, nitroprusside34
(6)	Schematic of Dose–Response Curve of Loop Diuretics in Heart Failure Patients Compared With Normal Controls
(7)	Proposed positive and negative effects of loop diuretics as well as sites of action for thiazide diuretics and natriuretic doses of aldosterone antagonists. CHF _ congestive heart failure; LV _ left ventricular; MR _ mitral regurgitation; RAAS _ renin-angiotensin-aldosterone system
(8)	Mechanisms of cardiorenal syndrome70

(9)	pressure ele		U				73
(10)	Effect of a	U		_	•		91
(11)	Relations dysfunction					•	116

Introduction

Acute HF is defined as "a rapid onset or change in the signs and symptoms of HF, resulting in the need for urgent therapy." It may be either new onset HF or worsening of pre-existing HF and that cardiac dysfunction may be related to different causes, including acute coronary syndromes (ACS), valve dysfunction, arrhythmias, pericardial disease, and increased left ventricular (LV) afterload and that these different causes may interact (*Dickstein et al.*, 2008).

The majority of acute heart failure patients have worsening chronic heart failure; after initial management resulting in stabilization, they should no longer be considered acute but chronic heart failure (*Dickstein et al.*, 2008).

The most important pathophysiologic drive of heart failure is a reduction in cardiac output. This can be the consequence of decreased systolic function, impaired diastolic function, or a combination of both. The net result is the same: decreased cardiac output resulting in decreased renal perfusion (*Dickstein et al.*, 2008).

Worsening of renal function during hospitalization for acute decompensated heart failure occurs in more than onethird of hospitalized patients and is associated with prolonged hospital stay, higher in–hospital mortality, increased likelihood of readmission, and increased mortality after discharge (Giamouzis et al., 2009).

Importantly, new evidence suggests that renal failure in heart failure has a striking resemblance with chronic kidney disease in primary renal disease and not only includes functional changes such as decreased GFR, decreased erythropoietin production, calcium- phosphate metabolism disturbances, chronic inflammation, and vitamin D deficiency but also glomerular and tubular damage (*Belonje et al., 2010*).

In recent years nephrologists and cardiologists have worked together in further elucidating this frequently occurring condition now termed as cardiorenal syndrome (*Ronco et al.*, 2010).

Both reduced renal perfusion and increased renal Venous pressure represent the hemodynamic interaction of reduced GRF in the cardiorenal syndrome in heart failure. This highlights the observation that the pivotal player in the pathophysiology of cardiorenal failure remains impaired hemodynamics, but that there are other so-called cardiorenal connectors such as renin angiotensin aldosterone system activity, inflammation, nitric oxide balance, sympathetic nervous system activity, reactive oxygen species and the presence of diabetes and hypertension that may modulate this