

#### Ain Shams University Faculty of Engineering Structural Engineering Department

## CORROSION BEHAVIOR OF MMFX STEEL IN COMPARISON OF CONVENTIONAL REINFORCING STEEL By

#### Eng. Hazem Mohamed Mohamed Moharram

#### A Thesis

Submitted in Partial Fulfillment for Requirements of the Degree of the Master of Science in Structural Engineering

#### **Supervisors**

Prof. Dr. Mohamed M. H. Attabi

Professor of Structural Engineering Ain Shams University

Prof. Dr. Osama H. Abd Alwahed

Professor of concrete Structures Ain Shams University

Prof.Dr. Tarek Kamal Hassan

Professor of structural Engineering
Ain Shams University
Cairo 2013

# EXAMINING COMMITTEE FOR MASTER In STRUCTURAL ENGINEERING

### CORROSION BEHAVIOR OF MMFX STEEL IN COMPARISON OF CONVENTIONAL REINFORCING STEEL

| Signature                                     |
|-----------------------------------------------|
| Prof. Ibrahim Galal Ibrahim Shaaban           |
| Director of projects management unit          |
| Ministry of higher education                  |
| Prof. Abdel Wahab Ahmed El Ghandour           |
| Professor of Reinforced Concrete Structures   |
| Faculty of engineering – Ain Shams University |
| Prof. Mohamed M. Hussein Attabi               |
| Professor of Reinforced Concrete Structures   |
| Faculty of engineering - Ain Shams University |
|                                               |
| Prof. Osama Hamdy Abd Alwahed                 |
| Professor of Reinforced Concrete Structures   |
| Faculty of engineering - Ain Shams University |
| Date: 19 January 2013                         |

#### **STATEMENT**

This thesis is submitted to Ain Shams University for the degree of Master of Science in Engineering (Structural)

This work was carried out by the author at concrete unit laboratory in the faculty of engineering, Ain Shams University.

No part of this thesis has been previously submitted for obtaining a degree or a qualification before

Date: January 2013

Name: Hazem M. M. Moharram

Signature:

#### **ACKNOWLEDGMENT**

Firstly, and mostly, I thank ALLAH for His Mercy and Grace, Which enabled me to complete this work.

I would like to thank Professor **Mohamed Mohamed Hussein Attabi** for his invaluable support, guidance, and constructive suggestions throughout this research

Great gratitude and sincere appreciation go to Professor **Osama Hamdy Abd Alwahed** forhis helpful suggestions, corilnents, accessibility, and for reviewing thismanuscript.

Great gratitude and sincere appreciation go to Dr. Tarek Kamal Hassan forhis direct supervision, valuable advice, continuous support and for hisreviewing of manuscript.

I would like to thank Dr. Khaled Helal, , Dr. Ibrahim abd Allatif and Eng. Mohammed Omar and Eng Fared Elgabas for their sincere help and encouragement. I would like to thank my father, my mother, my wife Doaa, my son Ziead and my two daughters Riem and Arwa , for their love, support, patience, and encouragement, especially in difficult times, which enabled me to continue this work and to whom I owe everything. And last, but not least, I would like to deeply thank my brothers, my sisters, my father in law and my mother in law for their support and encouragement The experimental work was carried out at the concrete Laboratory, Structural Engineering Department, Faculty of Engineering, Ain Shams University. The help and assistance of the laboratory staff are gratefully appreciated

#### **AUTHOR**

Name : Hazem Mohamed Mohamed Moharram

Date of birth : 13 / 8 / 1977

Place of birth : Cairo

Academic degree: B.Sc. of Civil Engineering

University : Minia Date : 1999 Grade : Good

Current job : Civil Engineer

#### TABLE OF CONTENTS

| TABLE OF CONTENTS | i    |
|-------------------|------|
| LIST OF FIGURES   | V    |
| LIST OF TABLES    | viii |
| ABSTRACT          | ix   |

| CHAF           | PTER 11                                                | 1   |
|----------------|--------------------------------------------------------|-----|
| 1.1 Ge         | eneral1                                                | 1   |
| 1.2 Sc         | cope of Research1                                      | 1   |
| 1.3 Th         | nesis Outline1                                         | 2   |
| СНАР           | PTER 2                                                 | 14  |
| 2.1.           | Corrosion Definition.                                  | 14  |
| 2.2.           | Theory of corrosion.                                   | 14  |
| 2.3.           | Carbonation                                            | .15 |
| 2.4.           | Chloride Attack Mechanism                              | 16  |
| 2.5.           | Chloride Threshold.                                    | 17  |
| 2.6.           | Methods of Corrosion Monitoring.                       | 18  |
| 2.7.           | MMFX technology                                        | 19  |
| 2.8.           | MMFX Back ground                                       | .19 |
| 2.9.           | MMFX Applications                                      | 20  |
| 2.10.          | MMFX corrosion resistance concept                      | 4   |
| 2.11.          | MMFX properties                                        | 6   |
| 2              | 2.11.1. Mechanical properties                          | :6  |
| 2              | 2.11.2 Chemical Properties                             | 8   |
| 2.12.<br>steel | Flexural behavior of concrete beams reinforced by MMFX | 0   |

| CHA  | PTER 3 |                              | 33 |
|------|--------|------------------------------|----|
| 3.1. | INTRO  | ODUCTION                     | 33 |
| 3.2. | OBJE   | CTIVES                       | 33 |
| 3.3. | EXPE   | RIMENTAL PROGRAM             | 34 |
| 3.4. | TEST   | SPECIMENS                    | 36 |
| 3.5. | MAT    | ERIAL PROPERTIES             | 38 |
| 3    | .5.1.  | Fine Aggregate               | 38 |
| 3    | .5.2.  | Coarse Aggregate             | 39 |
| 3    | 3.5.3. | Cement                       | 40 |
| 3    | 3.5.4. | Concrete                     | 41 |
| 3.6. | CONC   | CRETE TEST RESULTS           | 42 |
| 3    | 3.6.1. | Steel Reinforcement          | 43 |
| 3.7. | EXPE   | ERIMENTAL WORK               | 44 |
|      | 3.7.1. | Molds                        | 44 |
|      | 3.7.2. | Concrete Casting and Curing  | 44 |
| 3    | 3.7.3. | CRACKING LOAD DETERMINATION  | 44 |
|      | 3.7.4. | Test setup                   | 45 |
|      | 3.7.5. | Accelerated corrosion system | 47 |
|      | 3.7.6. | Instrumentation              | 48 |

| C    | CHAPTE   | ZR 4                       | 49 |
|------|----------|----------------------------|----|
| 4.1. | Labo     | oratory results            | 49 |
|      | 4.1.1.   | corrosion crack width      | 49 |
|      | 4.1.2.   | Ultimate carrying capacity | 55 |
|      |          |                            |    |
|      | 4.1.3.   | steel mass loss            | 59 |
| 4.2. | Discu    | ssion                      | 64 |
|      | 4.2.1.   | corrosion crack width      | 64 |
|      | 4.2.2.   | ultimate carrying capacity | 66 |
| CHA  | APTER 5  |                            | 69 |
| 5.1. | Summary  | y                          | 69 |
| 5.2. | Conclusi | ons                        | 69 |
| 5.3. |          |                            |    |
| Reco | ommenda  | ations                     | 71 |
| DEE  | EDENICI  | E                          | 70 |

#### LIST OF FIGURES

| Fig 2.1 Electrolytic cell                                            |
|----------------------------------------------------------------------|
| Fig2.2 USA State and province agencies with past use of MMFX 2 steel |
| Fig1. 3 Schematic of a Microgalvanic Cell in Steel24                 |
| Figure 1.4 bend test specimen                                        |
| Fig 3.1. Specimens detail                                            |
| Fig 3-2 specimen molds                                               |
| Fig3-3 cracking load                                                 |
| Fig 3.4 test set-up                                                  |
| Fig3-5 electric set-up for accelerated corrosion system 47           |
| Fig 4-1 typical corrosion crack width for specimens                  |
| Fig 4-2 typical corrosion crack width for specimens                  |
| Fig 4. 3 Typically Corrosion crack width vs exposure time specimens  |
| for C18-P1.5 and MF18-P1.551                                         |
| Fig 4. 4 lab photos for MMFX and conventional steel                  |
| specimens at 90 days51                                               |
| Fig 4. 5 Typically Corrosion crack width vs exposure time            |
| for C18-P3 and MF18-P353                                             |
| Fig 4.6 lab photos for MMFX and conventional steel at 180 days53     |
| Fig 4. 7 corrosion crack width vs exposure time                      |
| for C13-1-P1.5 and MF13-1-P1.5                                       |

| Fig 4.8 lab photos for MMFX and conventional                   |    |
|----------------------------------------------------------------|----|
| steel at 90 days group C                                       | 54 |
| Fig 4. 9 Load –Mid span deflection for conventional            |    |
| and MMFX beam ( Virgin beam 2T18)                              | 55 |
| Fig 4. 10 Load–Deflection behavior for C18-P1.5 and MF18-P1.5  | 56 |
| Fig 4 .11 Photos for failure of MMFX and conventional          |    |
| steel specimens at 90 days                                     | 56 |
| Fig 4. 12 Load-Deflection behavior for C18-1-P3 and MF18-1-    |    |
| P3                                                             | 57 |
| Fig 4. 13 Photos for failure of MMFX and conventional steel    |    |
| specimens at 180 days                                          | 57 |
| Fig 4.14Load –Deflection behavior for                          |    |
| C13-2-P1.5 and Mf13-2-P1.5                                     | 58 |
| Fig 4. 15 Photos for failure of MMFX and conventional          |    |
| steel specimens at 90 days group C                             | 58 |
| Fig 4. 16 Mass loss ratio in MMFX and conventional             |    |
| steel specimens at 90 days                                     | 59 |
| Fig 4.17 Conventional steel coupons extracted from             |    |
| beam after 90 days                                             | 60 |
| Fig 4. 18 MMFX steel coupons extracted from beam after 90 days | 60 |
| Fig 4. 19 Mass loss ratio in MMFX and conventional             |    |
| steel specimens at 180 days                                    | 61 |

| Fig 4. 20 Conventional steel coupons extracted from beam after 180 days | 61 |
|-------------------------------------------------------------------------|----|
| Fig 4. 21 MMFX steel coupons extracted from beam                        |    |
| after 180 days.                                                         | 61 |
| Fig 4. 22 Mass loss ratio in MMFX and conventional                      |    |
| steel specimens at 90 days group C                                      | 62 |
| Fig 4. 23 Conventional steel coupons extracted from                     |    |
| beam after 90 days group C                                              | 63 |
| Fig 4. 24 MMFX steel coupons extracted from                             |    |
| beam after 90 days group C                                              | 63 |
| Fig 4. 25 Effect of reinforcement ratio on corrosion                    |    |
| crack width at ULT load                                                 | 64 |
| Fig 4. 26 Effect of sustained load on corrosion                         |    |
| crack width at 90 days                                                  | 65 |
| Fig 4.27 Effect of exposure time on corrosion                           |    |
| crack width at ULT load.                                                | 66 |
| Fig 4. 28 Effect of reinforcement ratio on ultimate                     |    |
| carrying capacity                                                       | 67 |
| Fig 4. 29 Effect of sustained load on ultimate carrying capacity        | 67 |
| Fig 4. 30 Effect of exposure time on ultimate carrying                  | 68 |

#### LIST OF TABLES

| Table2-1 Summary of mechanical properties for MMFX           | 27 |
|--------------------------------------------------------------|----|
| Table2-2 Summary of MMFX bar unit weights (US customary from |    |
| Table 2-3Chemical analysis of MMFX rebar                     | 28 |
|                                                              |    |
| Table 3-1 Test matrix.                                       | 35 |
| Table 3-2 Physical Properties of Sand                        | 39 |
| Table 3-3 Sieve Analysis for Fine Aggregate                  | 39 |
| Table 3-4 Chemical Analysis for Fine Aggregate               | 39 |
| Table (3-5) Physical properties of coarse aggregate          | 40 |
| Table (3-6) Sieve Analysis for Coarse Aggregate              | 40 |
| Table (3-7) Chemical Analysis for Coarse Aggregate           | 40 |
| Table (3-8) Physical and mechanical properties of cement     | 41 |
| Table 3-9 Concrete mix proportions                           | 41 |
| Table 3-10 average results of the tests                      | 42 |
| Table 3-11 The mechanical properties of main steel bars      | 43 |
| Table 3-12 The mechanical properties of plain steel bars     | 43 |

#### **ABSTRACT**

Corrosion, the cancer of steel, makes concrete deterioration as increasing of steel cross section occurred and longitudinal cracks appear after that decreasing of steel cross section occurs due to corrosion mechanism. All of above lead to weak interfacial layer and then reduction of load carrying capacity. Numerous researches investigate corrosion mechanism, corrosion prevention, corrosion rate measurements and predict the time for corrosion initiation which is based on diffusion rates of CO2 gas or CL- ions. Little information is available in the literature concerning the effect of the presence of flexural cracks on the corrosion rate after corrosion initiation. MMFX steel micro-composite multistructural formable reinforcing steel is a new technology model of steel based on nanotechnology. MMFX steel has high resistance of corrosion and also has high strength. This thesis

gives spot light on corrosion and semi updated researches about MMFX steel and studies the corrosion behavior of both conventional steel and MMFX steel under flexural effect to give structural engineer information and new horizon in reinforced concrete sections.