Synthesis and Studieson Heterocyclic Compounds Containing Mixed and Non-Mixed Systems

By

KHALID MOHAMMAD DARWISH (M.Sc. Degree)

Dissertation submitted to the

University of Ain Shams Cairo – Egypt

for the degree of

DOCTOR OF PHILOSOPHY IN CHEMISTRY

Under the supervision of

Prof. Dr. Maher A. El-Hashash (D.Sc.) Dr. Sameh A. Rizk Prof. Dr. Fakhry A. El-Bassiouny

Chemistry Department

Faculty of Science

Ain Shams University

2013

Synthesis and Studies on Heterocyclic Compounds Containing Mixed and Non-Mixed Systems

 $\mathbf{B}\mathbf{y}$

KHALID MOHAMMAD DARWISH (M.Sc. Degree)

Supervisors	Thesis approval
Prof. Dr. Maher A. El-Hashash (D.Sc.)	•••••
Dr. Sameh A. Rizk	•••••
Prof. Dr. Fakhry A. El-Bassiouny	

Head of Chemistry Department

Prof. Dr.:

Chemistry Department
Faculty of Science
Ain Shams University

2013

ACKNOWLEDGEMENT

The author would like to express his sincere thanks, tribute and gratitude to *prof. Dr.*

Maher A. El-Hashash, Dr. Sameh A. Rizk and Prof. Dr. Fakhry A. El-Bassiouny.

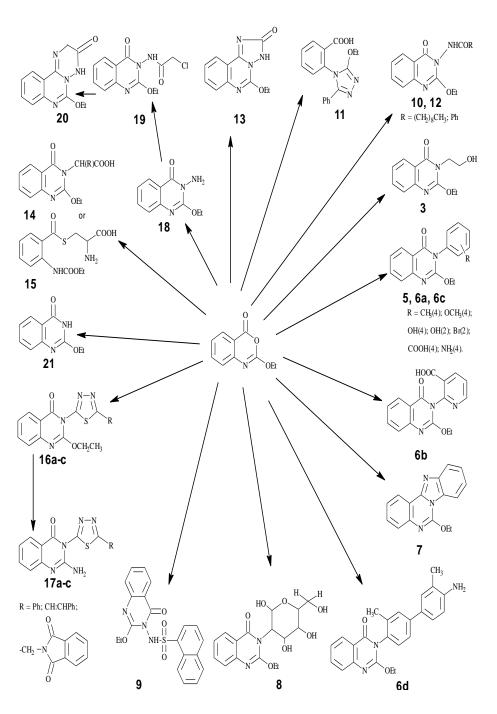
Chemistry Department, Science Faculty, Ain Shams University, Cairo, for the continuous guidance and help throughout the course of this dissertation.

Contents

	Page No.
Summary	i
Introduction	1
Results and Discussion	69
Antimicrobial Investigation	97
Spectral Figures	
Experimental Section	100
References	115
Arabic summary	Í

SUMMARY

Summary


The thesis includes two parts:

<u>Part I: The uses of 2-ethoxy (4H)-3,1-benzoxazin-4-one in</u> the synthesis of quinazolinones

- Reaction of 2-ethoxy (4*H*)-3,1-benzoxazin-4-one (**1**) with 2-aminoethanol in ethanol followed by heating to give at first the open structure 2-ethoxycarbonylamino(β -hydroxyethyl)benzamide (**2**) then 2-ethoxy-3-(2-hydroxyethyl)quinazolin-4-one (**3**) respectively.
- Reaction of compound (1) with *p*-toluidine, *p*-anisidine, *p*-hydroxyaniline, *o*-hydroxyaniline and *o*-bromoaniline in boiling ethanol then further heating of products to give first the open structures anthranils (4a-e) then the novel quinazolinones (5a-e).
- Reactions of compound (1) with *p*-aminobenzoic acid, 2-aminonicotinic acid, *p*-phenylenediamine and *o*-tolidine in butanol and/or ethanol affording compounds (**6a-d**) respectively.
- Reaction of compound (1) with *o*-phenylenediamine in ethanol yielded compound (7).

- Reaction of compound (1) with glucosamine hydrochloride in pyridine afforded compound (8).
- Reaction of compound (1) with *o*-naphthalenesulfonyl hydrazide in ethanol yielded compound (9).
- Reaction of compound (1) with *n*-decanohydrazide in ethanol afforded compound (10).
- Interaction of compound (1) with benzoylhydrazine in n-butanol yielded compound (11) and in benzene afforded compound (12).
- Reaction of compound (1) with semicarbazide in acetic acid/fused sodium acetate gave compound (13).
- Reactions of compound (1) with amino acids namely, DL-alanine, L-asparagine, and L-arginine in pyridine yielded compounds (14a-c) and with L-cysteine in pyridine gave compound (15).
- Reactions of compound (1) with heteroaromatic amines namely, 2-phenyl-5-aminothiadiazole, 2-cinnamyl-5-aminothiadiazole and 5-phthalimido-methyl-2-aminothiadiazole in acetic acid yielded compounds (16a-c), respectively.

- Reactions of compounds (16a-c) with formamide afforded compounds (17a-c).
- Reaction of compound (1) with hydrazine hydrate in ethanol yielded compound (18).
- Reaction of compound (18) with chloroacetyl chloride in DMF yielded compound (19).
- Reaction of compound (19) with ammonium acetate in oil bath gave compound (20).
- Reaction of compound (1) with ammonium acetate in oil bath yielded compound (21).

Part II: Reactivity and use of 2-ethoxy-4(3H) quinazolinone (21) in synthesis of quinazolines and quinazolinones

- Reaction of compound (21) with phosphorus pentasulfide / dry xylene afforded compound (22).
- Reaction of compound (21) with acrylonitrile in DMF afforded compound (23).
- Reaction of compound (21) with disubstituted oxirane in ethanol afforded compounds (24).
- Reaction of compound (21) with an *N*-glucosidated thiadiazole derivative in pyridine yielded compound (25).
- Reactions of compound (21) with p-acetylaminobenzenesulfonyl chloride in pyridine yielded compound (26).
- Reaction of compound (21) with ethyl chloroformate in pyrine gave compound (27).
- Reaction of compound (21) with chloroacetyl chloride in pyridine yielded compound (28).
- Reaction of compound (21) with α -bromoglucose tetraacetate in 1,4-dioxane yielded compound (29).
- Reaction of compound (21) with phosphorus pentachloride

and phosphoryl chloride on water bath giving the chloroderivative (30).

- Reaction of compound (30) with sodium azide in acetic acid gave compound (31).
- Reaction of compound (30) with thiosemicarbazide in pyridine yielded compound (32).
- Reaction of compound (32) with diethyl oxalate in ethanol afforded compound (33).
- Reaction of compound (30) with hydrazine hydrate in butanol yielded compound (34).
- Reactions of compound (34) with acetyl chloride in pyridine yielded compound (35).
- Reactions of compound (34) with cinnamoyl chloride and furoyl chlorides in pyridine gave compounds (36a and 36b).
- Reaction of compound (34) with D-xylose in methanol gave compound (37).

Introduction

Synthesis of 4*H***-3,1-Benzoxazin-4-ones**

I) From anthranilic acid:

2-Substituted (4*H*)-3,1-benzoxazin-4-one derivatives **2** are prepared by reacting anthranilic acids **1** with an appropriate anhydride. Lower molecular weight anhydrides are usually employed as the solvent [21,32,52,100,101,170,247,256]. Cosolvents such as chloroform [25], dioxane [41] and toluene [300], have been successfully used.

$$X \xrightarrow{\text{COOH}} (\text{RCO})_2\text{O} \xrightarrow{\text{NH}_2} X \xrightarrow{\text{N}} \text{R}$$

X = H, halo, OMe, COOH, NO₂; R = Me, Et, n-Pr, CF_3

Similarly, 2-(β -carboxyethyl) (4*H*)-3,1-benzoxazin-4-one **3** has been obtained by heating anthranilic acid with succinic anhydride in butanol [105].

Introduction

Anthranilic acid reacts with two equivalents of an acid chloride in pyridine solution to give 2-alkyl-3,1-benzoxazin-4-one **4**. 2-Phenyl analog **5** containing a variety of substituents (X = H, Cl, Br, Me, OMe, CF₃, NO₂, COOH) at the ortho-, meta- or para-positions have been prepared [33,83,123,162,151,248]. Also, both α - and β -naphthyl analogs [212], as well as the styryl derivative **6** [33,290,291] and furyl derivatives **8** and phthalimide derivatives **9** have been reported [178,280].

COOH

NH₂

$$\frac{2RCOCl}{pyridine}$$

NH₂
 $\frac{RCOOH}{N}$

R

 $\frac{1}{N}$

R

 $\frac{1}{N}$

R

 $\frac{1}{N}$
 $\frac{1}{N}$

Introduction

Sunscreen containing a cyclic imino esters **10** as a UV absorbent, has been obtained *via* interaction of 2,6-naphthalene dicarboxylic acid chloride with anthranilic acid in pyridine [313].

The reaction of equimolar quantities of anthranilic acid and nicotinic acid in phosphorus oxychloride solvent produced interesting pyridyl analogs **11** [269].

COOH
$$R = Cl, SMe$$

$$R = Cl, SMe$$

The aminobenzoxazinone derivative **13** is prepared from the reaction of equimolar quantities of 3-trifluoromethylanthranilic acid **12** and a Boc-protected amino acid with two equivalents of isobutyl chloroformate in the presence of *N*-methylmorpholine [62,64].