

OPTIMUM CONTROL OF DEMOLITION IN STRUCTURES

BY

HEBA HASSAN ABDALLA ALY ORFY

B.Sc. STRUCTURAL ENGINEERING 1997 M.Sc. STRUCTURAL ENGINEERING 2005 CIVIL ENGINEERING DEPARTMENT AIN SHAMS UNIVERSITY

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT FOR THE REQUIREMENTS OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN CIVIL ENGINEERING (STRUCTURAL) SUPERVISED BY

Prof. Dr. MOSTAFA KAMEL ZIDAN

Professor of Structural Engineering
Ain Shams University

Prof. Dr. MOHAMMED NOOR EL-DEEN FAIED

Professor of Structural Engineering
Ain Shams University

Prof. Dr. AHMED MAGED ELHOSENY

Professor of Structural Engineering
Ain Shams University

Dr.

KHALD MOHMED ABDEL-GWAD

Dr. of structural Eng.
Police Academy

Cairo - 2013

EXAMINERS COMMITTEE

NA	AME, TITLE & AFFILIATION	SIGNATURE
1.	Prof. Dr. Khaled Mahmoud Mosalem Department of Civil Engineering Faculty of Engineering University of Californian, USA	
2.	Prof. Dr. Sherif Ahmed Morad Professor of Structural Engineering Faculty of Engineering Cairo University	
3.	Prof. Dr. Mostafa Kamel Zidan Professor of Structural Engineering Faculty of Engineering Ain Shams University	
4.	Prof. Dr. Ahmed Maged Elhosiny Professor of Structural Engineering Faculty of Engineering Ain Shams University	

Date: 16 / 3 /2013

INFORMATION ABOUT THE RESEARCHER

Name:	Heba Hassan Abdalla Aly Orfy
Birth:	Cairo, 7 June 1974
Degree:	Bachelor of Science in Civil Engineering, Structural Section Faculty
	of Engineering - Suez Canal University – June 1997
	Master of Science in Civil Engineering, Structural Section Faculty
	of Engineering - Ain Shams University – June 2005
Current Job:	
	Signature:
	Date:/20013

STATEMENT

This dissertation is submitted to the department of Structural Engineering, Faculty of Engineering, Ain Shams University, For the degree of Doctor of Philosophy in Structural Engineering.

The work included in this thesis, was carried out by the author in the department of Structural Engineering, Faculty of Engineering, Ain Shams University, from 2005 to 2013.

No part of this thesis has been submitted to any other university or institute for the award of a degree of qualification.

Author's Name : Heba Hassan Abdallah Aly Orfy

Signature :

Date :

ACKNOWLEDGEMENT

First of all, I would like to express my appreciation to all my professors and superiors who taught me and guided me along my whole educational and career life.

I do present my deepest gratitude to **Prof. Dr. Mostafa Kamel Zidan,** Professor of Structural Engineering, Faculty of Engineering, Ain Shams University for his valuable suggestions, support, guidance and supervision throughout the research.

Deep appreciation is extended in order to thank **Prof. Dr. Ahmed Maged Elhosiny** and **Prof. Dr. Mohmed N. Fayed** Professors of Structural Engineering, Faculty of Engineering, Ain Shams University for their patience, advice and helpful assistance throughout all phases of this work.

Deep appreciation is extended in order to thank **Dr. Khalid Mohmed Abdelgwad** Dr. of structural Eng. Police for his patience, advice and helpful assistance throughout all phases of this work.

I would like to express my deepest gratitude for my parent's love, and the continuous prayers they offer on my behalf, words stand helpless and cannot express my appreciation to my family.

Name: Heba Hassan Abdalla Aly Orfy

Title: Optimum control of demolition in structures

Ph.D. of Science dissertation, Ain Shams University, Faculty of Engineering, Structural Engineering Department - 2013

ABSTRACT

The present thesis deals with the control of structural demolition by implosion. The work done includes an extensive survey for realistic and efficient simulation of structure demolition by means of controlled explosives, damage to surface structures due to blast vibration, standards related to maximum vibration levels for preventing damage of structures and some important building demolition cases by blast around the world. The concept of blasting strategies in the field of demolition of buildings by blast is described in details through illustrative figures. This includes pre-blast considerations, detonators and dynamite, blasting hole for demolition, and safety procedures. Other main types of building demolition such as progressive demolition; deliberate collapse mechanisms and deconstruction are also described. Aspects of progressive collapse and demolition of structure by implosion are described.

The basic important algorithms for finite element modeling in LS-DYNA program which can be used for structural demolition by implosion are described. This includes constitutive material models for concrete, reinforcing steel as well as high energy explosive and its equations of state. Special aspects for modeling i.e. erosion, hourglass and contact segments are illustrated in brief.

The validity of using commercial program SAP2000 for building local collapse analysis "progressive collapse" has been investigated and the results were compared with the corresponding results from LS-DYNA program.

With respect to demolition through use of explosives "implosion", a fully three-dimensional numerical model is proposed for RC columns to idealize arbitrarily set multiple blast holes with different geometrical and loading conditions. Validation of the proposed model has been illustrated by comparing its numerical results with the available experiment work performed in the field. Further, numerical study for damage patterns of RC columns under demolition blasting has been carried out and compared with the experimental work in literature. The influence of different parameters on the blasting damage pattern of RC columns has been investigated (i. e. steel rebar arrangement, existing loading condition, explosive factors, and concrete strength). In addition, the estimated quantities of charges as well as arrangement and spacing between holes that required to blast reinforced concrete columns have been investigated. The results are summarized and discussed through plotted figures for wave and fracture propagations as well as damage patterns.

A new proposed model considering both blasting stage as well as demolition stage together have been used for applications to different structures. This model together with the three-dimensional numerical model for R.C. columns represent an important scientific addition in the field of Optimum control of demolition in structural buildings. The applications were carried out on different buildings such as: a five story reinforced concrete building, tall chimney and an elevated tank. The results these applications have been discussed.

Summary, conclusions and important recommendations for future extension of the research work done within the thesis are presented.

Keywords: Control; Demolition; Blast; LS-DYNA

TABLE OF CONTENTS

SUB	BJECT	Page
EXA	AMINERS	COMMITTEEii
INF	ORMATIC	ON ABOUT THE ESEARCHERiii
STA	TEMENT	iv
ACK	KNOWLEI	OGEMENTv
ABS	STRACT	Vi
TAE	BLE OF CO	ONTENTSvii
LIST	Γ OF TAB	LESxiii
LIST	Γ OF FIGU	JRESxv
PRE	FACE	xxxi
CIL	APTER (1) INTRODUCTION
СПА	AF IEK (I	INTRODUCTION
1.1	BACK	GROUND 1
1.2	PROGE	RESSIVE COLLAPSE
1.3	BULDI	NG – DEMOLITION BY IMPLOSION4
	1.3.1 B	lasting Strategies
	1.3.2 S	imulation Model7
1.4	PROBL	EM DEFINITION 8
1.5	RESEA	RCH OBJECTIVES9
1.6	OUTLI	NEE OF THESIS11
СН	APTER (2	2) HISTORICAL REVIEW AND LITERATURE SURVEY
2.1	INTRO	DUCTION13
2.2	PREVI	OUS WORK IN CONTROL BLASTING DEMOLITION OF
	STRUC	TURES14
2.3	OVERI	EVIEW OF STANDARDS SRELATED TO MAXIMUM
	VIBRA	TION LEVELS FOR PREVENTING DAMAGE TO STRUCTURES 4
	2.3.1	U.S. Office of Surface Mining (OSM)
	2.3.2	British Standard 7385

	2.3.3	Australian Standard 2187.244
	2.3.4	SSR Standard45
	2.3.5	German DIN 4150 Standard45
	2.3.6	The American Association of State Highway and Transportation
		Officials (AASHTO)46
	2.3.7	Egyptian code of soil – part 6 (2000)48
2.4	REAL S	STRUCTURE DEMOLITION CASES BY BLAST AROUND THE
	WORL	.D48
CHA	APTER (3	METHODS USED FOR BUILDING DEMOLITION
	(,
3.1	INTRO	DUCTION62
3.2	MAIN	TYPES OF DEMOLITION63
	3.2.1	Progressive demolition
	3.2.2	Deliberate collapse mechanisms
	3.2.3	Deconstruction64
3.3 I	DEMOLIT	TION METHODS65
	3.3.1	General65
	3.3.2	Top Down manual method65
	3.3.3	Top Down by machine66
	3.3.4	Mechanical Method by Hydraulic Crusher with Long Boom Arm67
	3.3.5	Wrecking Ball69
	3.3.6	Implosion70
	3.3.7	Other Methods71
3.4	SEQUEN	CE OF BUILDING DEMOLITION BY IMPLOSION78
	3.4.1	Pre-blast Considerations
	3.4.2	Detonators and Dynamite80
	3.4.3	Hole arrangement and charge quantity for concrete blasting86
	3.4.4	Some details for Building Preparation91
	3.4.5	Safety procedures in crowded places
3.5	GENERA	AL ASPECTS FOR BUILDING DEMOLITION BY IMPLOSION
	AND CO	DLLAPSE SCENARIOS93

	3.5.1	Different Building Types	93
	3.5.2	Collapse scenarios	96
СНА	APTER (4) FINITE ELEMENT MODELING FOR LS-DYNA	
		PROGRAM	
4.1	INTOD	UCTION	98
4.2	STRUC	TURAL ANALYSIS METHOD	98
4.3	BASIC	CONSIDERATION ON FINITE ELEMENT METHOD_FOR	
	LSDYN	ГА	100
	4.3.1	Arbitrary Lagrangian / Eulerian (ALE) Finite Element Solution	
		Methodology	103
	4.3.2	Time Integration Algorithm	104
4.4	EQUAT	TION OF STATE MODELS (EOS)	105
	4.4.1	EOS for Air	106
	4.4.2	EOS for Explosion	107
4.5	CONST	TITUTIVE MATERIAL MODELS	108
	4.5.1	Plastic kinematic / Isotropic Material	108
	4.5.2	Soil Material	113
	4.5.3	Concrete Material	114
	4.5.4	Explosive Material	119
	4.5.5	Air Material	119
	4.5.6	Rigid Material	120
	4.5.7	Reinforcement Concrete Beam Material	120
4.6	IMPOR	TANT ASPECTS FOR MODELLING	124
	4.6.1	Erosion	124
	4.6.2	Hourglass	125
	4.6.3	Contact Modeling	126
СН	APTER (5) PROGRESSIVE COLLAPSE ANALYSIS OF MULTI-	
		STORY RC BUILDING	
5.1	INTI	RODUCTION	126
5.1		CRIPTION OF 5-STORY RC BUILDING	
۷.∠	יטינע	CRII 11011 OF J-BTORT RC DUILDING	13/

	5.2.1	Introduction	13/
	5.2.2	Scope of Models	139
	5.2.3	Model Assumptions	140
	5.2.4	Load combination for progressive collapse analysis	140
5.3	NUM	ERICAL ANALYSIS OF PROGRESSIVE COLLAPSE USIN	IG SAP
	2000.		142
	5.3.1	Mathematical Model	142
	5.3.2	Cases of Study	145
	5.3.3	Results for progressive collapse analysis	147
5.4	NUM	ERICAL ANALYSIS OF PROGRESSIVE COLLAPSE BY L	S-
	DYN	Α	154
	5.4.1	Mathematical Model	154
	5.4.2	Cases of Study	157
	5.4.3	Results for progressive collapse analysis	157
5.5	COM	MENTS ON SAP 2000 AND LS-DYNA RESULTS	161
- 1	n m	COLUMNS UNDER DEMOLITION BY BLASTI	
6.1	INTED	ODUCTION	1.62
6.2		MATED EXPLOSIVE FACTOR FOR BLASTING CONCRE	
0.2		JMNS	
6.3		PARATIVE EXAMPLE FOR SIMULATING WAVE AND	104
0.3			ITION
		CTURE PROPAGATION IN RC BEAM THROUGH DEMOL	
		LASTING	
	6.3.1	RC Beam description	
	6.3.2	r · · · · · · · · · · · · · · · · · · ·	
		and fracture development in the RC beam by Uenishi et al. (2	ŕ
	6.3.3	Present numerical results for the dynamic wave propagation	
		fracture development in the RC beam	
		a- Mathematical Model	172
		b Cosas of study	
		b- Cases of study	

6.4	NUMERICAL STUDY FOR DAMAGE OF RC CONCRETE COLUM	ИNS
	UNDER DEMOLITION BY BLASTING COMPARED WITH	
	AVAILABLE EXPERIMENTAL WORK	183
	6.4.1 Description of RC column specimens	183
	6.4.2 Available experimental work in literature	186
	6.4.3 Mathematical Models	190
	6.4.4 Cases of study	193
	6.4.5 Results and discussion	194
6.5	NUMERICAL INVESTIGATION OF HOLE ARRANGEMENT AND	D
	CHARGE QUANTITY REQUIRED FOR BLASTING RC CONCRET	ГЕ
	COLUMN	222
	6.5.1 Description of RC concrete column model	222
	6.5.2 Cases of study	225
	6.5.3 Results and discussion	225
	DEMOLITION SCENARIOS AND THEIR	
	GENERATED GROUND VIBRATION.	
7.1		243
	GENERATED GROUND VIBRATION. INTRODUCTION	
	INTRODUCTIONBRATION GENERATED BY BUILDING DEMOLITION BLASTING	244
	INTRODUCTION	244
	INTRODUCTIONBRATION GENERATED BY BUILDING DEMOLITION BLASTING 7.2.1 Classification of protection object due to collapse vibration	244 244 ion.245
	INTRODUCTION BRATION GENERATED BY BUILDING DEMOLITION BLASTING 7.2.1 Classification of protection object due to collapse vibration 7.2.2 Empirical formula for vibration velocity due to dynamic compact	244 244 ion.245 246
7.2 VII	INTRODUCTION	244 244 ion.245 246
7.2 VIII 7.3 DE	INTRODUCTION	244 244 ion.245 246 247
7.2 VIII 7.3 DE	INTRODUCTION	244 ion.245 246 247 AL
7.2 VIII 7.3 DE	INTRODUCTION BRATION GENERATED BY BUILDING DEMOLITION BLASTING 7.2.1 Classification of protection object due to collapse vibration 7.2.2 Empirical formula for vibration velocity due to dynamic compact 7.2.3 Safety vibration velocity	244 ion.245 246 247 AL 247
7.2 VIII 7.3 DE	INTRODUCTION BRATION GENERATED BY BUILDING DEMOLITION BLASTING 7.2.1 Classification of protection object due to collapse vibration 7.2.2 Empirical formula for vibration velocity due to dynamic compact 7.2.3 Safety vibration velocity	244 ion.245 246 247 AL 247 248
7.2 VIII 7.3 DE	INTRODUCTION	244 ion.245246247 AL247248
7.2 VIII 7.3 DE MO	INTRODUCTION	244 ion.245246247 AL247248248
7.2 VIII 7.3 DE MC	INTRODUCTION BRATION GENERATED BY BUILDING DEMOLITION BLASTING 7.2.1 Classification of protection object due to collapse vibration	244244245247 AL247248248251

	7.5.2 Demolition scenario with and without time delay, Model (III)	268
	7.5.3The effect of soil type, Model (II)	282
	7.5.4The effect of erosion, Model (II)	287
	7.5.5 The effect of increasing building mass, Models (I) and (II)	291
	7.5.6The effect of wall cladding, Model (II)	308
	7.5.7The validity of using Empirical formula for estimating the horizont	al
	vibration velocity due to building collapse	314
7.6	DEMOLITION SCENARIO PATTERNS FOR TWO DIFFERENT	
STRUC	TURES	319
	7.6.1 Cylinder chimney	319
	7.6.2 Elevated tank	.340
CHAP'	TER (8) SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK	
	RECOMMENDATIONS FOR FUTURE WORK	
8.1	SUMMARY	346
8.2	CONCLUSION	347
8	2.1 Simulation Model for structure demolition by blasting	347
8	2.2 Damage of RC Columns and Beams under Demolition by Blasting	348
8	2.3 Vibrations generated by building demolition	348
8	2.4 Control demolition blasting for different structures	350
8	2.5 Control demolition blasting for RC multistory building	. 350
8	2.6 Control demolition blasting for cylinder chimney with load-bearing	
	walls	351
8.3	RECOMMENDATIONS	352
DD	AFN GEG	252
KEFEI	RENCES	. 333

xiii

LIST OF TABLESS

Table 2.1	Comparison of initial and optimized blasting strategy	18
Table 2.2	Summary of different hybrid rigid body models	20
Table 2.3	Australian Standard, 2006 (AS 2187.2)	44
Table 2.4	USSR Standard, (Singh et al. 2010)	45
Table 2.5	German DIN Standard 4150 (1986)	46
Table 2.6	AASHTO Maximum Vibration Levels for Preventing Damage, (1996)	47
Table 3.1	The important performance properties of explosives, Holmberg, (1982)	80
Table 3.2	SOME EXPLOSIVE WEIGHT STRENGTHS, Holmberg (1982)	81
Table 3.3		87
Table 3.4	EXPLOSIVE ROCK CONSTANTS FOR VARIOUS ROCK TYPES	87
Table 3.5		88
Table 3.6		89
Table 3.7		90
Table 4.1	Input parameters for JWL equation of state	108
Table 4.2	Plastic hardening, ideal plasticity, and softening	112
Table 4.3	Winfrith concrete model generated pressure versus volume strain response	116
Table 4.4	Material property	125
Table 4.5	Constitutive model for concrete in LS-DYNA	126
Table 5.1	Material Properties	139
Table 5.2	Reinforced Concrete Member Sizes and Reinforcement	139
Table 5.3	Properties of Redesigned Members	146
Table 6.1	Estimated explosive factor (C) for reinforced concrete Column	165
Table 6.2	(dynamite is the reference explosive material)	103
Table 6.2	Recommended explosive factor (C) for column with different concrete types (GURIT is the reference explosive material)	166
Table 6.3	The explosive factor (C) and charge per col. unit length for RC	242

xiv

	Columns of different Models	
Table 7.1	The relation between the damage levels of buildings and	
	vibration velocity (CHI En-an, ZHANG Yi-ping 2010)	246
Table 7.2	Material Model 5 input for Soil type I	253
Table 7.3	Material Model 5 inputs for Soil type II	254
Table 7.4	Maximum horizontal vibration velocities caused by the collapsed	
	multi-bay five story building (Model III)	281
Table 7.5	Ratios of resultant vibration acceleration to gravity acceleration	
	caused by the collapsed multi-bay five story building (Model III)	281
Table 7.6	Maximum horizontal vibration velocity caused by the collapsed	
	one-bay one story building for different mass quantities (M)	298
Table 7.7	Ratios of resultant vibration acceleration to gravity acceleration	
	caused by the collapsed one-bay one story building	298
Table 7.8	Maximum horizontal vibration velocity caused by the collapsed	
	one-bay five story building for different mass quantities (M)	307
Table 7.9	Ratios of resultant vibration acceleration to gravity acceleration	
	caused by the collapsed one-bay five story building	307
Table 7.10	Estimated horizontal vibration velocity caused by the collapsed	
	one-bay one story building	315
Table 7.11	Ratio of analyzed maximum horizontal vibration velocity to the	
	value of $(3\sqrt{-Mg H})/R$) for one-bay one story building	315
Table 7.12	Estimated horizontal vibration velocity caused by the collapsed	
	one-bay five story building	316
Table 7.13	Ratio of analyzed maximum horizontal vibration velocity to the	
	value of $(3\sqrt{-Mg H})/R$) for one-bay five story building	316
Table 7.14	Estimated horizontal vibration velocity caused by the collapsed	
	multi-bay five story building	318
Table 7.15	Ratio of analyzed maximum horizontal vibration velocity to the	
	value of $(3\sqrt{-Mg} \text{ H})/R)$ for multi-bay five story building	318

LIST OF FIGURES

Fig. 1.1	Ronan Point Apartment Building Following a Progressive	
	Collapse of Cantilever Balcony Structure	2
Fig. 1.2	Illustration of Progressive Collapse of WTC, September 11,	
	(2001)	3
Fig. 1.3	Principles of blasting strategies, Baitsch M et al. (2006)	7
Fig. 2.1	Locations of numerical integration points in ASI-Gauss technique	15
Fig. 2.2	Outline of blast demolition experimental system [Isobe et al. (2006)]	15
Fig. 2.3	Blast conditions for a 6-story frame model [Isobe et al. (2006)]	16
Fig. 2.4	Comparison of demolition modes (Isobe et al. (2006))	17
Fig. 2.5	Schematic presentation of the connection between the multi-level	
	simulation model, the optimization model, and the optimization	
	algorithm Baitsch et al. (2006)	18
Fig. 2.6	Blasting of 300m high chimney using a three-segment folding	
	strategy (Baitsch, et al.(2006))	19
Fig. 2.7	Video sequence and Pure Finite Element Simulation at Different	
	Time States (0.0 s $-$ 1.8 s $-$ 3.0 s $-$ 4.8 s) [Matten et al. (2006) and	
	Blankenhorn et al. (2007)]	20
Fig. 2.8	Simulation results of different hybrid rigid body models -	
	(combined discretizations containing Finite element parts (bright)	
	and rigid body parts (dark)), table 2.2 at Different Time States	
	(0.0 s - 1.8 s - 3.0 s - 4.8 s), strongly simplified model with only	
	one rigid body	21
Fig. 2.9	Relation between finite element analysis and multi body models	
	[Hartmann et al. (2009)]	22
Fig. 2.10	Communication between applied simulation models [Hartmann et	
	al. (2009)]	23
Fig. 2.11	Single span three-storied framework structure of reinforced	
	concrete (Mattern et al. (2007)	23
Fig. 2.12	The simulation of the collapse with a pure finite element model at	
	times $t2 = 4.4 \text{ s}$, $t3 = 4.8 \text{ s}$, $t4 = 5.2 \text{ s}$ [Mattern et al. (2007)]	24