Prevalence of Helicobacter Pylori among Patients with Minimal Hepatic Encephalopathy and the Effect of its Eradication

Thesis Submitted for partial fulfillment of Master Degree in Internal Medicine

By Karim Samy Abd Allah Bahnasy M.B.B.CH

Faculty of Medicine, Ain Shams University

Under supervision of **Prof. Dr. Hesham Ezz EL Din Saeed**

Professor of Internal Medicine and Gastroenterology Faculty of Medicine, Ain Shams University

Dr. Nevine Ibrahim Musa

Lecturer of Internal Medicine and Gastroenterology Faculty of Medicine, Ain Shams University

Dr. Eslam Safwat Mohamed

Lecturer of Internal Medicine and Gastroenterology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University

List of Contents

Title	Page
List of Tables	II
List of Figures	IV
List of abbreviations	VII
Introduction	١١
Aim of the Study	۳
Hepatic Encephalopathy	٤ ٤
Minimal Hepatic Encephalopathy (MHE)	٤٢
Helicobacter Pylori	٥٧
H.Pylori and Hepatic Encephalopathy	۸۸
Patients and Methods	٩١
Results	99
Discussion	177
Summary	157
Conclusion	
Recommendations	1 ٤١
References	1 £ 7

List of Tables

Table No	Title	Page
Table (1): Types of hepatic ence	phalopathy	0
Table (Y): Clinical presentation		
Table (*): Precipitating factors in		
Table (٤): Clinical manifestat		
Table (°): West Haven Grading		
Table (\(\gamma\): Glasgow Coma Scale		
Table (Y): Clinical Hepatic I	Encephalopathy Staging Sca	ale
Table (^): Summary of treatmen	t of hepatic encephalopathy	٣٦
Table (4): Treatment stratagems u	sed in HE	٣٩
Table (''): Suggested procedur		
of MHE		٤٧
Table (۱۱): Psychometric tests		
	halopathy	
Table (۱۲): Age differences between		
Table (۱۳): Sex distribution amo		
Table (\forall \xi): Prevalence of H.pylori		_
Table (1°): Comparison between		
Table (17): Comparison betwee		
Table (\\'): Comparison betwee		
	NAME A OME	
Table (۱۸): Comparison betwee		
	coring	
Table (19): Comparison between	_	
regards prevalence of H		
Table (Y·): Comparison betwee		
	ous history of overt hepat	
	n MUE and OUE nationts wi	
Table (۲): Comparison betwee		
+ve n.pyion as regards	s their age	1 1 1

List of Tables (Cont...)

Table No		Title		Page
Table (۲۲): Comp	arison betwe	en MHE and	OHE patients v	vith
+ve H.py	lori as regar	ds their sex		۱۱۷
Table (۲۳): Compa	arison betwe	en eradicated	and non eradica	ited
MHE	patients as	s regards	improvement	in
psychom	etric test		•••••	١٢.
Table (Y \(\xi \)): Comparison between H. pylori positive and H.				
pylori ne	gative MHE	patients	•••••	١٢٢
Table (۲°): Comparison between eradicated H. pylori and non-				
eradicate	ed H. pylori N	MHE patients	•••••	١٢٤

List of Figures

Figure No		Title		Page
	Classification oosed by the Worki			
	eurologic impairn			
	licrograph of Alzh			
_	patic encephalopa		•	
	PHES (a): Numbe			
	ection test B, (
	ng test, (e): Line to	_	•	
	hibitory control te			
	Helicobacter pylori			
	hibition of MyDA			
• • •	Carcinogenic effect		•	
Figure (9): C	astric biopsy spec	imen shov	ving helicobacter	pylori
adhe	ring to gastric epit	helium		٧٤٧
	Treatment regime			
low a	and high clarithror	nycin resir	tance	۸۳
	Number connection			
	Age distribution a			
• •	Sex distribution ar	_	U 1	
	Prevalence of H.p			
	ps			
	Comparison between			
	GGT levels			
• •	Comparison between		_	
•	Comparison between		•	
	direct Bilirubin lev			
	Comparison bet n Albumin and tot			
	Comparison betw			
•	gards WBC count		•	
	Comparison betw			
	gards Hb			
	Comparison between			
	rds MCV			

List of Figures (Cont...)

Figure No Title Page
Figure (۲۲): Comparison between MHE group and OHE group as regards platelets
Figure (۲۳): Comparison between MHE group and OHE group as regards BUN
Figure (۲٤): Comparison between MHE group and OHE group as regards serum creatinine
Figure (۲°): Comparison between MHE and OHE groups as regards Child-Paugh grading
Figure (۲): Prevalence of H.pylori among MHE group and OHE group
Figure (YV): Comparison between MHE group and OHE group as regards the previous history of overt hepatic encephalopathy
Figure (۲۸): Comparison between MHE and OHE patients with +ve H.pylori as regards their age
Figure (۲۹): Comparison between MHE and OHE patients with +ve H.pylori as regards their sex
Figure (**): Child-Paugh grading among H.pylori positive MHE patients
Figure (**): Eradication of H.pylori among H.pylori +ve MHE patients
Figure (TY): Psycometric test among eradicated H.pylori MHE patients
Figure (۳۳): Age difference between Eradicated and non- eradicated H. pylori MHE patients
Figure (**\varepsilon): Psychomotor test of H. pylori eradicated and non-eradicated MHE patients

List of Abbreviations

Abbreviation

DCIA D 1 1 1 1 1 1 1 1
BCAA Branched chain amino acid
Cag PAICag pathogenicity island
CDRCognitive drug research
CFF Critical flicker frequency
CHESS Clinical hepatic encephalopathy scoring scale
EEGElectroencephalogram
GABA Gama amino butyric acids
H.pylorihelicobactor pylori
HE Hepatic encephalopathy
HpSAH.pylori stool antigen
LOLA L-ornithin L-aspartate
MHE Minimal hepatic encephalopathy
miR-\00Micro RNA-\00
MMSE Mini mental state examination
Mn Manganese
MyD ^{ΛΛ} Myeloid differentiation protein ^{ΛΛ}
NCTNumber connection test
NMDA Nmethyl-D aspartate
OHE Overt hepatic encephalopathy
PET Positron emission tomography
PHES Psychometric hepatic encephalopathy score
RBANS Repeatable battery for assessment of neurological
status
SD Standard deviation
TIPS Transjagular intrahepatic porto-systemic shunt
Vac AVacuolating cytotoxin A

ACKNOIDED GEMENT

First of all, all gratitude is due to ALLAH almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Dr. Hesham Ezz EL Din Saeed Professor of Internal Medicine and Gastroenterology for his meticulous supervision, kind guidance, valuable instruction and generous help.

Special Thanks to Dr. Nevine Ibrahim Musa Lecturer of Internal Medicine and Gastroenterology for her sincere efforts, great help, outstanding support, active participation and kind guidance.

My sincere Thanks to Dr. Eslam Safwat Mohamed Lecturer of Internal Medicine and Gastroenterology for his kind guidance, valuable instruction and generous help.

Introduction

Hepatic encephalopathy (HE) is a frequent complication of liver cirrhosis. Although the exact pathogenesis of hepatic encephalopathy is unknown, accumulation of ammonia from poor hepatic function and porto-systemic shunts has been implicated as a primary factor (*Dubois et al.*, **...**).

Some patients have minimal hepatic encephalopathy (MHE), which is not discernible at clinical examination but can be detected using sensitive tests of coordination, such as number connection tests (NCT), figure connection test (FCT) and line tracing test, electroencephalography and visual, auditory, and somatosensory evoked potentials (*Agrawal et al.*, *\(\dagger \) (1).

The term minimal hepatic encephalopathy (MHE) refers to the subtle changes in cognitive function, electrophysiological parameters, cerebral neurochemical/neurotransmitter homeostasis, cerebral blood flow, metabolism, and fluid homeostasis that can be observed in patients with cirrhosis who have no clinical evidence of hepatic encephalopathy (*Nava and Delgadillo*, ***11).

Helicobacter pylori is the most common chronic bacterial infection in humans worldwide. The prevalence of H.pylori infection is high in developing countries (^-9.½) and lower in developed countries (^-7.½) (Bureš and Kopáčová, 7.11).

١

H.pylori infection is an important factor of inducing high blood ammonia concentration and hepatic encephalopathy in cirrhotic patients. H.pylori eradication may be helpful for treatment and prevention of HE (*Wang et al.*, 7 · · 7).

In patients with liver cirrhosis, there is a significant association between H. pylori infection and MHE. Anti-H. pylori therapy results in reduction in blood ammonia levels and improvement in MHE (*Agrawal et al.*, **• **).

The literature contains conflicting data, with several other studies showing ammonia levels do not significantly differ between cirrhotic patients with and without H pylori infection. Ammonia production in the stomach by H pylori urease appears to be inadequate to clinically affect ammonia disposal in the majority of cirrhotic patients (*shu-jie et al.*, **.***).

Aim of the Study

The aim of the present study is to assess the prevalence of H. pylori infection among patients with minimal and overt hepatic encephalopathy and to determine the effect of its eradication in those with minimal hepatic encephalopathy.

Hepatic Encephalopathy

Introduction

Hepatic encephalopathy (HE) is a neuropsychiatric syndrome in patients with liver disease and/or portosystemic shunting that affects quality of life and prognosis. HE is caused by disorders that affect the liver. These include disorders that reduce liver function (such as cirrhosis or hepatitis) and conditions in which blood circulation does not enter the liver (*Garcia*, **•1*).

Classification:

The World Congress of Gastroenterology has categorized HE based on underlying hepatic abnormalities, and for patients with cirrhosis it can be further subdivided by the duration and characteristics of neurologic dysfunction. The three types of HE are A, B, and C which are associated with acute liver failure,

porto-systemic Bypass without intrinsic liver disease, and Cirrhosis, respectively (Al Sibae and McGuire, ** • **). (Table *).

Table (1): Types of hepatic encephalopathy (*Munoz*, * · · ^)

Type A	Encephalopathy from acute liver failure	
Type A Type B	Encephalopathy caused by portosystemic shunting, without intrinsic liver disease	
Type C	Encephalopathy of cirrhosis associated with portosystemic shunting:	
	Episodic: precipitated, spontaneous, or recurrent	
	Resistant: mild, severe, treatment-dependent	
	Minimal: previously known as "subclinical"	

Encephalopathy has been further subdivided, based on duration and characteristics of neurologic dysfunction, into episodic, persistent, and minimal subtypes. Episodic HE occurs over a short time span and fluctuates in severity. Persistent HE is a chronic clinical condition of cognitive deficits that affects social and occupational functioning. Minimal HE is associated by subtle cognitive impairments of attention, response inhibition and executive function (Al Sibae and McGuire, Y...).

Table ($^{\vee}$): Clinical presentation of hepatic encephalopathy (Seyan et al., $^{\vee} \cdot ^{\vee} \cdot ^{\vee}$)

Encephalopathy	Definition	
Acute	Acute liver dysfunction	
Recurrent or episodic	Episodes of mental alteration in a	
	patient with cirrhosis, even in the	
	absence of known precipitating factor	
Persistent	Neurological deficit that persists	
	despite the reversal of liver injury, such	
	as liver transplantation or the removal	
	of a precipitating factor	
Minimal	No evidence of overt encephalopathy,	
(previously known as subclinical)	I) but subtle cognitive deficit might be	
	detected with a neuropsychological	

In cirrhotic patients who were followed from a time when the disease was compensated, HE represents, in fact, the second most frequent cause of decompensation after ascites and before variceal bleeding. HE is particularly frequent in patients undergoing porto-systemic shunt, and is considered an important prognostic factor for survival (*Bajaj*, **.***).

A generic hypothesis proposes that the symptoms are caused by the loss of a "protective" mechanism exerted by the liver on brain functions. As an effect of liver failure and portosystemic shunting, substances arising from the gut are able to reach the systemic circulation and the central nervous system, where they can exert a "toxic effect" on brain function (*Riggio et al.*, **.***).

The Astrocyte swelling hypothesis is able to explain one of the key features of HE. It has been recently proposed that neutrophils, in addition to ammonia, may be involved in the pathogenesis of HE. Thus, neutrophils can be a target for future anti-inflammatory therapeutic strategies in addition to ammonia lowering therapies (*Shawcross et al.*, *\(\(\mathcal{f}\)\(\dagger\)\(\dagger\).