Hepcidin as a Biomarker for Iron Status in Chronic Kidney Disease

Thesis
Submitted for Partial Fulfillment of Master Degree in Internal
Medicine

By **Dina SabryFayekBasanty** M.B., B.Ch.

Under Supervision of

Prof. Dr .Manal El Husseiny Abu Farha

Professor of Internal Medicine, Faculty of Medicine, Cairo University

Prof.Dr.Laila Ahmed Rashed

professor of biochemistry, faculty of medicine, Cairo University

Dr.Noha Mohamed El Husseiny

Lecturer of internal medicine, Faculty of Medicine, Cairo University

Faculty of Medicine CairoUniversity 2013

Acknowledgements

First of all, I would like to express my deepest thanks to **Professor Dr. Manal El Husseiny Abu Farha**, professor of Internal medicine, Cairo University, for her kind supervision and for continuous encouragement and guidance. She offered me much of her kind advices.

I would like also to express my sincere thanks to **Professor Dr. Laila Ahmed Rashed**, professor of biochemistry, faculty of medicine, Cairo University, as she offered me much of her effort and time in providing data, reviewing references and her continuous support for me along this work and till now.

I would like also to express my thanks and appreciation to **Dr.** Noha Mohamed El husseiny, lecturer of internal medicine, Faculty of Medicine, Cairo University, for her support and guidance in every step of this work, as she neither saved her effort, nor her time for accomplishment of this work.

Dedication

This work is dedicated to my Mother who inspired me and taught me the way to perform my goals. Thanks to my husband that I think without his support, this work would not appear.

Contents

	Page
List of Abbreviations	I
List of Tables	V
List of Figures	VII
Introduction & Aim of the Work	1
Review of Literature	
Chapter (1):	
Chronic renal failure	4
Chapter (2):	
ANEMIA OF CHRONIC RENAL FALURE	14
Chapter (3):	
Erythropoietin	36
Chapter (4):	
Iron homeostasis	78
Patients & Methods	88
Results	90
Discussion	106
Conclusions & Recommendations	114
Summary	115
References	118
Arabic Summary	

List of Abbreviations

A1C	glycosylated hemoglobin
AIDS	Acquired Immune Deficiency Disease
AA	Aplastic anemia
AcSDKP	N-acetyl-seryl-aspartyl-lysyl-proline
ADP	adenosine diphosphate
ALP	Alkaline phosphatase
ALT	alanine aminotransferase
ATP	Adenosine triphosphate
Aza	Azathioprine
BMI	Body mass index
BCAA	Branched Chain Amino Acid
BFU-e	Burst Forming Undifferentiated Erythroid
BBB	Blood brain barrier
BUN	Blood Urea Nitrogen
ВМР	Bone morphogenic protein
CdCl2	Cadmium chloride
CHF	Congestive Heart Failure
CRF	Chronic Renal Failure
CKD	Chronic Kidney Disease
cAMP	cyclic adenosine monophosphate
CAPD	Continuous Ambulatory Peritoneal Dialysis
CRP	C-reactive protein
CsA	Ciclosporin A
CHr	Reticulocyte Hb Content
Ctl	Cytotoxic t lymphocyte
CVD	Cardiovascular disease

CPD	Continuous Peritoneal Dialysis
DM	Diabetes mellitus
Dcytb	Duodenal cytochrome b
DHF	Dihydroxyfumarate
DEXA	Dual Energy X-ray Absorbometry
DFO	Desferroxamine
DMT1	divalent metal transporter 1
DMS	Dialysis Malnutrition Score
DΡΟ-α	darbepoetin-α
DRIVE study	Dialysis Patients Response To IV Iron With Elevated Ferritin
ESA	Erthropoiesis stimulating agent
ESRD	End Stage Renal Disease
EBV	Epstein-Barr virus
EPO	Erythropoietin
Fe	Iron
FPG	Fasting plasma glucose
FFM	Fat Free Mass
FM	Fat Mass
GI	Gastrointestinal
G-CSF	Granulocytes- Colony Stimulating Factor
GFR	Glomerular Filtration Rate
GGT	Gamma-glutamyltransferase
GH	Growth Hormone
НСТ	Hematocrit
HD	Hemodialysis
Hb	Hemoglobin
HCV	Hepatitis C virus

HDL	High-density lipoprotein
IDDM	Insulin dependent diabetes mellitus
IFN	Interferon
IFG	Impaired fasting glucose
Ig	Immunoglobulin
IGT	Impaired glucose tolerance
IHD	Ischemic heart disease
IL	Interleukin
IGF	Insulin Growth Factor
INF	Interferon
ISAT	Iron Saturation Ratio
IDA	Iron deficiency anemia
IMP	Integrin-mobilferrin pathway
IPSS	International prognostic scoring system
IRE	Iron regulatory elements
IRIDA	Iron refractory iron deficiency anemia
IRP	Iron regulatory peptide
LDL	Low density lipoprotein
KFT	Kidney function test
LFT	Liver function test
MIA	Malnutrition –Inflammation Atherosclerosis
MHD	Maintenance Hemodialysis
Mmf	Mycophenolate mofetil
Mg/mo	Milligram/Month
MICS	Malnutrition –Inflammation Complex Syndrome
MIS	Malnutrition Inflammation Score
MN	Malnutrition
NIDDM	Non-insulin-dependent diabetes mellitus

NHANES	National Health And Nutritional Examination Survey
nHuEPO	Recombinant Human Erythropoietin
NKF/KDOQI	National Kidney Foundation / Kidney Disease Outcome and Quality Initiative
NO	Nitric Oxide
nPNA	Normalized Protein Nitrogen Appearance
PCR	Protein Catabolic Rate
PD	Peritoneal Dialysis
PEM	Protein Energy Malnutrition
PHRC	Percentage Of Hypochromic Red Blood Cells
PNA	Protein Equivalent To Total Nitrogen Appearance
PTH	Parathyroid hormone
RBCs	Red Blood Cells
RE	Reticuloendothelial
REE	Resting Energy Expendition
RES	Reticuloendothelial system
SBW	Standard Body Weight
SGA	Subjective Global Assessment
SQUID	Super Conducting Quantum Interference Device
Stfr	Soluble Transferring Receptor
TIBC	Total Iron Binding Capacity
TNF	Tumor Necrosis Factor
TSAT	Transferrin Saturation
UBW	Usual Body Weight
USF1	Upstream stimulatory factor-1
UTR	Untranslated region
VEGF	Vascular endothelial cell growth factor
WHO	World Health Organization

WPSS	WHO prognostic scoring system
ZnPP	Erythrocyte Zinc Protoporphyrin

List of Tables

Tables		Pages
1	Stages of Chronic renal failure	4
2	show Systemic complication of renal failure	8
3	causes of iron deficiency anemia	18

List of Figures

Figures		Pages
1	Red cell survival as quantitated by Cr51 in anemic hemodialysis patients	16
2	Schematic representation of diagnosis of erythropoietin hyporesponsivness Quoted form kidney international	54
3	Haematocrit changes after parathyroidectomy (PTX) in chronic haemodialysis patients who had a bone biopsy prior to parathyroidectomy	58
4	Postoperative course of the mean parathyroid hormone levels during the 6 months period after parathyroidectomy.	61
5	Postoperative course of the mean rHuEPO doses during the 6 months period after PTX (Positive effects of PTX)	62
6	Postoperative course of the mean Hematocrit level during the 6 months period after parathyroidectomy, the hematocrit level (%) showed a significant increase at 3 months. This effect lasted until 6 months after parathyroidectomy.	63
7	Postoperative course of the mean ferritin level during the 6 months period after parathyroidectomy.	64
8	Postoperative course of the mean transferring saturation (TSAT) level (%) during the 6 months period after parathyroidectomy while the saturation shortly decreased at 3 months parathyroidectomy and recovered at 6 months.	65
9	Iron distribution in the adult human body	67

VIII

10	Iron import as well as iron export pathways in mammalian cell	70
11	Hepcidin structure and regulation	77
12	Key Proteins in Iron Homeostasis	85
13	Model of pathways of hepcidin regulation	87

Introduction

INTRODUCTION

Anemia is a severe complication of chronic kidney disease (CKD) that is seen in more than 80% of patients with impaired renal function (*Kalantar*, 2003).

Anemia has also been implicated in the development of congestive heart failure and left ventricular hypertrophy. If left untreated, anemia may cause death (*Macdougall* ..., 2002).

Although there are many mechanisms involved in the pathogenesis of anemia of renal disease, the primary cause is the inadequate production of erythropoietin by the damaged kidneys (*Stenvinkel* ..., 2001).

Erythropoietin is produced in the peritubular cells of the kidney and is the major hormone involved in the production of red blood cells (erythropoiesis). When erythropoietin levels are low, an inadequate number of oxygen-carrying red blood cells are produced (*Chonchol*, 2008).

Adequate iron stores are essential for achieving maximum benefit from erythropoietic agents, such as recombinant human erythropoietin (EPO) or darbepoetinalfa. Decreased iron stores or decreased availability of iron are the most common reasons for resistance to the effect of these agents (*Kalantar*, 2006).

Recombinant erythropoietin (rhEPO) has transformed anemia therapyin patients with chronic kidney disease (CKD). However, rhEPOresistance, often associated with iron deficiency and inflammation, remains a challenging problem. Current availableiron indices do not reliably identify iron-restricted erythropoiesis, often a sequel of inflammation, or those patients who wouldlikely benefit from parenteral iron therapy. Toaddress these issues. crucial understand it is to the molecularmechanisms that link inflammation, iron balance, and erythropoiesis (Singh, 2007).

Hepcidin, an acute phase reactant protein produced in the liver, is a recently discovered key regulator of iron homeostasis. Hepcidin inhibits intestinal iron absorption and iron releasefrom macrophages and hepatocytes. Because hepcidin production is increased by inflammation, and high hepcidin concentrations limit iron availability for erythropoiesis, hepcidin likelyplays a major role in the anemia of inflammation and rhEPO resistance (*Singh AK*, 2007).

Introduction

Because of its renal elimination and regulation by inflammation, it is possible that progressive renal insufficiency leads to altered hepcidin metabolism, subsequently affecting enteric absorption of iron and the availability of iron stores (*Ganz T*, 2007).