

Structural, Magnetic, and Transport Properties of Polymer-Nanoferrite Composites

Thesis Submitted for

Ph. D. Degree in Science,

Solis State Physics (Materials Science)

By

Neama Gomaa Imam

(*N.G.Imam*)

M. Sc. in Solid state Physics
Assistant Lecturer
Atomic Energy Authority- Nuclear Research CenterBasic Nuclear Science Division - Experimental Nuclear Physics Dept.

Supervised by

Prof. D.Sc. Mohamed Ali Ahmed
(M.A. Ahmed)
Prof. of Materials Science &Nanotechnology
Physics Dept., Material Science lab1, Science
Faculty- Cairo University.

Prof. Dr. Usama Seddik
(U. Seddik)
Prof. of Nuclear Physics
Atomic Energy Authority- Nuclear Research
Center, Experimental Nuclear Physics Dept.
"Head of Cyclotron Project".

Prof. Dr. Amera Zaky Dakrory
Prof. of Experimental Physics
Physics Dept.
Girls College -Ain Shams University

Prof. Dr. Nagwa Okasha Mourad
(N. Okasha)
Prof. of Materials Science
Physics Dept.
Girls College- Ain Shams University

(2013)

Approval Sheet

Thesis Submitted for

Ph. D. Degree in Science,

Solis State Physics (Materials Science)
By

Neama Gomaa Imam

Title of thesis:
"Structural, Magnetic, and Transport Properties
of Polymer-Nanoferrite Composites"

Thesis Supervisors:

Signature:

Prof. D.Sc. Mohamed Ali Ahmed
Prof. of Materials Science &Nanotechnology
Science Faculty - Cairo University.

Prof. Dr. Usama Seddik Prof. of Nuclear Physics Atomic Energy Authority- Nuclear Research Center.

Prof. Dr. Amera Zaky Dakrory
Prof. of Experimental Physics
Physics Dept. Girls College -Ain Shams University

Prof. Dr. Nagwa Okasha Mourad Prof. of Materials Science Physics Dept. Girls College- Ain Shams University

Post graduation administration:

Date of research: / /2013 Date of Approval: / /2013

Approval Stamp:

Approval of Faculty Council: / /2013

Approval of University Council: / /2013

Student name: Neama Gomaa Imam

Scientific degree: Ph. D. in Solid State Physics (Materials Science)

Faculty: Faculty of Girls, Arts, Science, and Education

Department: Physics department

University: Ain Shams university

Degree awarded: M. Sc. in Solid State Physics (Materials science)

(2007)

Dedication

To My Great God

Then

To Every One Who Helped Me:

To

My Supervisors...,

My Friends ...,

And

My Family...

Table of Contents

Conte	nts		page
Ackno	wled	gments	I
Table	of Co	ontents	III
List of	Figu	ıres	X
List of	Tab	les	XVIII
Abstra	ıct		XX
Chapt	er Oı	ne: Literature Survey and Theoretical Background	
1.A.	Lite	erature Survey	1
1.A.1.		iO ₃ / Ni _{0.5} Zn _{0.5} Fe ₂ O ₄ multiferroic magnetoelectric (ME) ocomposites: Historical perspective, status, and future directions	1
1.A.2.	Poly	mer matrix based nanocomposite material system	8
	i)	Polyaniline (PANI) Matrix Based Nanocomposites	10
	ii)	Polyethylene glycol (PEG) Matrix Based Nanocomposites	12
	iii)	Polyvinyl pyrrolidone (PVP) Matrix Based Nanocomposites	13
	iv)	Polyvinyl acetate (PVAc) Matrix Based Nanocomposites	14

1.B.	Theoretical Background	15
1.B.1.	Nanotechnology	15
1.B.2.	Multifunctional Materials	17
1.B.3.	Ferroic Nanomaterials	17
1.B.4.	Ferromagnetic Material	18
1.B.5.	Magnetic Interaction in Ferrites	19
1.B.6.	The Bloch Wall	21
1.B.7.	The Dynamic Behavior of Domains	21
1.B.8.	Magnetic Anisotropy	22
1.B.9.	Ferroelectric Material	23
1.B.10.	Ferroelectric phase transformations: 1 st and 2 nd – order phase transition	25
1.B.11.	Polymers: Ferroelastic materials	
1.B.12.	Electrical properties overview	27
	1) Conduction Mechanism in ferrites	27
	i) Hopping Model	27
	ii) Verway Conduction Mechanism	29
	iii) Koops Model	29
	2) Polarization and dielectric properties of ferroelectric phase	31
	3) Dielectric properties of ferroelastic (polymer) phase	31
	4) Dielectric Mechanisms	32

	i)	Electronic polarization	33
	ii)	Atomic polarization	33
	iii)	Dipole relaxation	34
	iv)	Ionic relaxation	34
	v)	Dielectric relaxation	34
	5)	Electrical conductivity and carrier transport of ferroelastic (polymer) phase	34
1.B.13	Mul	tiferroic Materials	35
1.B.14	. Bife	rroic Materials	36
1.B.15	. Nan	ocomposites	38
1.B.16	. Com	nposites in modern technology	42
1.B.17	. Mul	tiferroic Magnetoelectric Nanocomposites	43
1.B.18	S. Poly	rmer Matrix Based Nanocomposites	44
1.B.19	. Diel	ectric and magnetic properties of nanocomposites	46
i) Diel	ectric nature of the polymer composites	46
ii) Perc	olation phenomena in composite	47
1.B.20	. Mag	netic properties of polymer matrix based nanocomposites	48
Chap	ter Tv	vo: Experimental Aspects and Techniques	
2.1	Investi	gated Samples	49
2.2	Prepara	ation methods	50
	2.2a	Solid-state reaction route	50
	2.2b	Citrate– autocombustion method	53
	2.2b.1.	Nano- BaTiO ₃ powder preparation	53

	2.2b.2.	Preparation of Nickel–Zinc Ferrite (Ni _{0.5} Zn _{0.5} Fe ₂ O ₄).	56
2.3		oelectric nanocomposite in comparison between Ceramic route and technique	58
2.4	Synthes	is of hybrid nanocomposites/ Polymer nanocomposites	60
2.5	Charact	erization techniques	60
	2.5.1	X-ray Diffraction	60
	2.5.1.1	Crystallite size estimation by XRD	60
	2.5.2.	Scanning Electron Microscopy (SEM)	62
	2.5.3.	Energy dispersive X-ray spectroscopy (EDX)	62
	2.5.4.	Transmission Electron Microscopy (TEM)	62
	2.5.5.	Atomic Force Microscopy (AFM)	63
	2.5.6.	Fourier Transform Infrared (FTIR) Spectroscopy	64
	2.5.7.	Thermal characterization	65
	2.5.7a.	Differential Thermal Analysis (DTA)	66
	2.5.7b.	Thermogravimetry Analysis (TGA)	66
2.6.	Electric	al transport measurements	67
	2.6.a.	ac electrical conductivity measurements	67
	2.6.b.	Dielectric constant measurements	68
2.7.	Thermo	electric Power	70
2.8.	_	ic properties: Magnetic field measurements and calibration using coil method	72
	2.8a	Magnetic susceptibility measurements	72
	2.8b	Faraday's Method: (The non-homogeneous field method)	75
2.9.	Hystere	sis loop measurements: Vibrating Sample Magnetometer (VSM)	77

Chapter Three: Results and Discussion

*First Group:

(A):

3.1		es of (x) $BaTiO_3$ / (1-x) $Ni_{0.5}Zn_{0.5}Fe_2O_4$; x=0.0, 0.4, 0.5, 0.7 and 1.0 ed by ceramic method	78
	3.1.1	Differential thermal analysis (DTA) and thermographmetric analysis (TGA)	79
	3.1.2	X-Ray Diffraction (XRD)	80
	3.1.3	Scanning electron microscopy analysis (SEM)	82
	3.1.4	Fourier Transform Infrared (FTIR) Analysis	85
	3.1.5	Magnetic measurements	87
	3.1.6	Transport and Dielectric properties	93
	3.1.7	$First-Order\ Studies\ of\ Nanometric\ 0.5Ni_{0.5}Zn_{0.5}Fe_2O_4\ /\ 0.5BaTiO_3$ Biferroic Material System	101
	3.1.7.1	Structural Characterization	101
	3.1.7.2	Dielectric Properties	104
	a)	Dielectric constant	104
	b)	Dielectric loss Factor	109
	c)	ac electrical Conductivity (σ_{ac})	112
	(B) :		
3.2		oic nanocomposite 0.5BaTiO ₃ / 0.5Ni _{0.5} Zn _{0.5} Fe ₂ O ₄ orepared by Citrate–autocombustion method	120
	(B1):		
3.2.1	Result	ts and Discussion of nano-BaTiO ₃ (BTO)	120
	3.2.1.	a XRD Analysis	120
	3.2.1.	b FT-IR Analysis	122

	4.2.1. c SEM-EDX Analysis	122
	3.2.1.d TEM Analysis	124
	3.2.1. e AFM Analysis	125
	(B2):	
3.2.2	Results and Discussion of 0.5BTO / 0.5NZF nanocomposite synthesized by citrate-autocombustion route	130
	3.2.2.a XRD Analysis	130
	3.2.2.b FT-IR Analysis	131
	3.2.2.c SEM-EDX Analysis	133
	3.2.2.d TEM Analysis	134
	3.2.2.e AFM analysis	135
	3.2.2.f The magnetic measurements and data analysis	145
	3.2.2.g Transport and Dielectric properties	149
	(C):	
3.3.	$0.5~BaTiO_3$ / $0.5~Ni_{0.5}Zn_{0.5}Fe_2O_4$ multiferroic nanocomposite in comparison between Ceramic route and Citrate technique	157
	3.3.1 Microstructure and phase characterization	157
	3.3.2 Magnetic properties	161
	3.3.3 Electrical properties	164
	*Second group:	
3.4.	Innovative physical properties of BTO / NZF doped different polymers "Hybrid nanocomposites"	167
	3.4.1 Structure and morphology study	167
	3.4.2 Magnetic measurements of (BTO / NZF) /different polymers	171
	nanocomposites.	

	3.4.3	Electrical properties	174
	*Thire	d group:	
3.5.	Results	and discussion of (1-y) (0.5BTO / 0.5NZF) / (y) PEG;	179
	(0.0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0:	
	•	"Polyethylene glycol (PEG)based nanocomposites"	
	3.5.1	Structure characterization	179
	3.5.1.a.	Scanning electron microscopic analysis	179
	3.5.1.b.	FT- IR analysis	185
3.5.2	Magnet	ization measurements	187
3.5.3	Electric	al conductivity measurements	189
Conc	lusion		193
Refer	ences		197
Arabi	ic Sumn	nary	211

List of Figures

Figure		Page
Fig. 1.1	Schematic illustrate of a hysteresis loop showing the coercive field, remnant and saturation strain, polarization and magnetization	18
Fig. 1.2	Hysteresis loop showing magnetization switching in ferromagnetic materials	19
Fig. 1.3	Configuration of ions pairs in spinel ferrites with favourable distances and angle for effective magnetic interaction	20
Fig. 1.4	Change of domain magnetization by domain rotation	22
Fig. 1.5	The B-versus-H behavior for a ferromagnetic or ferrimagnetic material that was initially unmagnetized	22
Fig. 1.6	Ferroelectric hysteresis loop (schematic)	24
Fig. 1.7	Dielectric permittivity of BaTiO ₃ single crystals as a function of temperature under weak E-field. All phase transitions from high to low temperature are the first order	25
Fig. 1.8	Schematic diagrams illustrating the electron hopping across and the electron tunnelling through a square and a triangular potential barrier. The electron hopping or tunnelling in one direction is equivalent to the hole hopping or tunnelling in the opposite direction	29
Fig. 1.9	$BaTiO_3$ unit cell in an isometric projection and viewed looking along one face, which shows the displacement of Ti^{4+} and O^{2-} ions from the center of the face	31
Fig. 1.10	Polarizability as a function of frequency in polymer material	33
Fig. 1.11	Schematic illustration of functional ferroic and multiferroic materials	37
Fig. 1.12	Composite properties; (a) sum properties, (b) product properties, and (c) combination properties	42
Fig. 2.1	The standard ceramic technique setup	51
Fig. 2.2	Flow chart of standard ceramic procedure of synthesizing (x)BaTiO $_3$ /(1-x)Ni $_{0.5}$ Zn $_{0.5}$ Fe $_2$ O $_4$ nanocomposite	52
Fig. 2.3	Flow chart of synthesizing BaTiO ₃ perovskite	55

Fig. 2.4a.	BTO as prepared as black powder by citrate method before loading to the furnace.	56
Fig. 2.4b.	The formation of $BaTiO_3$ in the furnace, the color exchanged from dark to white.	56
Fig. 2.5.	Flow chart of synthesizing Nickel-zinc ferrite nanoparticles by citrate - autocombustion method	57
Fig. 2.6.	Flow chart of comparison of $0.5BaTiO_3/0.5Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanocomposite prepared by two different methods	59
Fig. 2.7.	Phillips X-Ray Diffractometer	61
Fig. 2.8.	JEOL JSM-5600LV SEM instrument and its EDX	62
Fig. 2.9.	JEOL 4010 400kV TEM instrument	63
Fig. 2.10.	Agilent 5500 AFM equipment	64
Fig. 2.11.	Thermo Scientific Nicolet iS10 FT-IR Spectrometer	65
Fig. 2.12.	Thermal analyzer DTA-50-Japan with TGA in the same setup	66
Fig. 2.13.	The instrument used for dielectric measurements model Hioki 3532 Z Hi Tester-Japan	68
Fig. 2.14.	The principle of thermoelectric power voltage measurements A is the sample, B and B are the electrodes for detecting the voltage V, T_1 , T_2 are the temperature of the sample two surfaces	70
Fig. 2.15.	A typical sample holder for Seebeck coefficient measurement. The points A, D: represents non-inductive furnace. B, C: represents two silver electrodes, E: is the position where the sample to be inserted. F: is the position where two Cu-Constantan thermocouples to be located, And G: is Ceramic plate for isolation purpose	71
Fig.2.16a,b	Calibration of the magnetic field as a function of the air gap width	73
Fig. 2.16c.	Magnetic field intensity variation with the vertical distance as a function of current intensity and at a gap of 4 cm, (c): magnetic field gradient calibration as a function of current intensity and at a gap of 4 cm	74
Fig. 2.17.	Schematic diagram of Faraday's method for measuring magnetic susceptibility	76
Fig. 2.18.	Specimen in non-homogeneous field	77
Fig. 2.19.	Vibrating sample magnetometer setup	77

Fig. 3.1.	a- DTA curve of BTO / NZF nanocomposite at $x = 0.6$. b- TGA curve of BTO / NZF composite at $x = 0.6$	80
Fig. 3.2.	XRD pattern of the composites (x) $BaTiO_3$ / (1-x) $Ni_{0.5}Zn_{0.5}Fe_2O_4$; x=0.0, 0.4, 0.5, 0.6, and 0.7 ME nanocomposite	81
Fig. 3.3a,b.	SEM photographs of nanaocomposite (x)BTO/(1-x)NZF; $x=0.0$ and 0.4	83
Fig. 3.3c.	SEM photograph with EDX for distinguishing between the two phases	83
Fig. 3.3d.	SEM photographs of nanaocomposite (0.5BT/0.5NZF) with different magnifications	84
Fig. 3.3e,f.	SEM micrograph for the investigated composite at $x=0.6$ and 0.7 respectively	84
Fig. 3.4.	Particle size distribution determined from SEM micrograph and using imaging program	85
Fig. 3.5.	FTIR spectra of (x)BT/(1-x)NZF nanocomposite, x= 0.0, 0.4, 0.5 , 0.6 and 0.7	86
Fig. 3.6a.	Variation of magnetic susceptibility of the investigated composite with temperature at different magnetic field	90
Fig. 3.6b.	The calculated values of Curie temperature for the composites (x) $BaTiO_3$ / $(1\hbox{-}x)Ni_{0.5}Zn_{0.5}Fe_2O_4$	91
Fig. 3.7a.	Magnetic hysteresis loop of ferroelectric content in the composites	92
Fig. 3.7b.	Variation of saturation magnetization (Ms) and magnetic moment with wt.% of ferroelectric content in the composites	92
Fig. 3.8.	Variation of dielectric constant ϵ' with temperature as a function of frequencies for (x) BTO / (1-x) NZF nanocomposite at different BTO content (x)	96
Fig. 3.9.	Frequency- dependent of dielectric constant for (x) BTO $/$ (1-x) NZF nanocomposites at $400\ K$	97
Fig. 3.10.	Variation of $ln\sigma_{ac}$ with $1000/T_K$ as a function of frequency for	98
	(x) BTO / (1-x) NZF nanocomposite at different BTO content (x)	
Fig. 3.11.	a- The variation of dc. electrical conductivity ($ln\sigma$) with temperature	99
	$1000/T_K$ at different BaTiO ₃ content (x)	
	b- The variation of dc electrical conductivity (ln σ) with BaTiO $_3$ content (x)	
	at selected temperature (443K)	

Fig. 3.12.	The variation of Seebck coefficient (α) as a function of temperature at	100
	different compositions	
Fig. 3.13.	XRD pattern of $0.5BaTiO_3 / 0.5Ni_{0.5}Zn_{0.5}Fe_2O_4$ Biferroic System.	103
Fig. 3.14.	SEM of $0.5BaTiO_3$ / $0.5Ni_{0.5}Zn_{0.5}Fe_2O_4$ Biferroic system in the powder shape.	103
Fig. 3.15.	FTIR of $0.5BaTiO_3 / 0.5Ni_{0.5}Zn_{0.5}Fe_2O_4$ Biferroic material	104
Fig. 3.16.	Variation of the real part of dielectric constant ϵ' versus absolute temperature at different frequencies	105
Fig. 3.17.	Variation of dielectric constant as a function of frequency at 400 K	105
Fig. 3.18.	Variation ϵ ' with absolute temperature (T_K) at different frequency during heating from R.T up to 830 K and cooling from 830 K down to R.T.	108
Fig. 3.19.	The calculated loop area between the heating and cooling curves of ϵ' versus absolute temperature (T_K) at different frequencies	109
Fig. 3.20.	Variation of the dielectric loss factor $\left(\epsilon^{\prime\prime}\right)$ with temperature at different frequencies	110
Fig. 3.21.	Variation of $(\epsilon")$ with absolute temperature (T_K) at different during heating and cooling runs from R.T up to 830 K and cooling from 830 K down to R.T.	111
Fig. 3.22.	The estimated area between the heating and cooling curves of (ϵ ") versus absolute temperature (T_K) at different frequencies	112
Fig. 3.23.	$ln(\sigma_{ac})$ versus ln (ω) at different temperatures in both heating and cooling processes	117
Fig. 3.24.	Variation of s with temperature in case of heating and cooling processes	117
Fig. 3.25.	In (σ_{ac}) versus 1000/T at different (f) during heating and cooling processes	118
Fig. 3.26.	The estimated area between the heating and cooling curves of ln (σ) versus the reciprocal of absolute temperature (1000/ T_K) at different frequencies	119
Fig. 3.27.	Seebeck coefficient of $0.5BaTiO_3 / 0.5Ni_{0.5}Zn_{0.5}Fe_2O_4$ Biferroic material	119
Fig. 3.28.	XRD pattern of nanopowder BaTiO ₃	121
Fig. 3.29.	Crystallite size distribution at different diffraction angle (2θ)	121