Current Status of the Implication of the Clinical Practice Pattern in Hemodialysis Prescription in regular Hemodialysis Patients in Cairo Governate

Chesis

Submitted for partial fulfillment of Master Degree in Internal Medicine

By **Zeinab Ahmed Mohamed**M.B.B.CH

Under Supervision of Prof. Dr. Hesham Mohamed Elsayed

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Dr. Sahar Mahmoud Shawki

Assistant Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2013

First and foremost, I feel always indebted to ALLAH, the Most Merciful, Who gives me power to accomplish this work.

I would like to express my deepest appreciation and sincere gratitude **Prof. Dr. Hesham Mohamed Elsayed,**Professor of Internal Medicine and Nephrology, Faculty of Medicine — Ain Shams University, for his sincere help, constant encouragement, constructive criticism, and valuable guidance, I was truly honoured to work under his supervision.

I feel deeply indebted to **Dr. Sahar Mahmoud Shawki**, Assistant Professor of Internal Medicine and Nephrology, Faculty of Medicine – Ain Shams University, for her active cooperation, deep concern, enthusiastic encouragement, the effort and time she has devoted to the fulfilment of this work.

I wish also to express my great gratitude and utmost appreciation to **Dr. Yahya Makkeyah**, Lecturer of Internal Medicine and nephrology, Ain Shams University, for his indispensable effort in the statistical part of this work.

Zeinab Ahmed Mohamed

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	vii
Introduction	1
Aim of the Work	3
Review of Literature	
Hemodialysis Prescription	4
Hemodialysis-Associated Comorbidities	25
Guidelines of kidney disease	50
Hemodialysis in Egypt	65
Subjects and Methods	76
Results	80
Discussion	114
Summary and Conclusion	122
Recommendations	126
References	127
Arabic Summary	

List of Abbreviations

ABD : Adynamic bone disease

ACEIs : Angiotensin-converting enzyme inhibitors ADPKD : Autosomal dominant polycystic kidney disease

AGE : Advanced glycation endproduct **AHA** : American Heart Association

AJKD : American Journal of Kidney Diseases

ANZSN : Australian and New Zealand Society of Nephrology

ARBs : Angiotensin receptor blockers

AV fistula : Arterio venous fistula : Bone alkaline phosphatase BNP : B-type natriuretic peptides

BP : Blood pressure **BUN** : Blood urea nitrogen

CAPN
 Canadian Association of Pediatric Nephrologists
 CARI
 Caring for Australian with Renal Impairment
 CDC
 Centers for Disease Control and prevention

CHF : Congestive heart failure

CHOIR : Correction of Hemoglobin and Outcomes in Renal

Insufficiency

CHr : Reticulocyte Hb content

CKD 5D : Chronic kidney disease stage 5 on dialysis

CKD : Chronic kidney diseases

CKD-MBD: Chronic Kidney Disease-Mineral and Bone Disorder

CMB : Calcium mass balanceCPG : Clinical guidelines

CREATE: Cardiovascular Risk Reduction by Early Anemia

Treatment with Epoetin Beta

CSN : Canadian Society of Nephrology

cTns : Cardiac troponins

CUA : Calcific uremic arteriolopathy

CVD : Cardiovascular disease

DCa : Dialysate calcium concentration

DFO: Desfirroxamine

DOPPS: Dialysis Outcomes and Practice Patterns Study

List of Abbreviations (Cont...)

EBPG : European Best Practice Guidelines

eKt/V : The Equilibrated Kt/V

EPO : Erythropoietin

ERA-EDTA: European Renal Association - European Dialysis and

Transplant Association

ERBP: European Renal Best Practice

ERT : Evidence review team

ESA : Erythropoietin stimulating agent

ESRD : End stage renal disease

FBC : Full blood count

FDA : US Food and Drug Administration

FGF : Fibroblast growth factor GFR : Glomerular filtration rate GN : Glomerulo nephritis

GRADE: Grades of Recommendation, Assessment,

Development, and Evaluation

Hb : Hemoglobin

HBV : Hepatitis-B virus

HCV : Hepatitis C virus

HD : Hemodialysis

HDF : Hemodiafiltration

HDP : Hemodialysis Product

HEMO study : The Hemodialysis study

HIV : Human immunodficiency virus

IL-1 : interleukin-1

iPTH : Intact parathyroid hormone

K/DOQI: National Kidney Foundation Kidney Disease

Outcome Quality Initiative

KDIGO: Kidney Disease Global Outcomes Improvement

initiative

KHA : Board of Kidney Health Australia

LVH : Left ventricle hypetrophy
MOH : Egyptian Ministry of Health

nPCR : Normalized Protein Catabolic rate

List of Abbreviations (Cont...)

NT-proBNP: N-terminal prohormone of brain natriuretic peptide

PAD : Peripheral arterial disease

PCI: Percutaneous coronary intervention

PRCA : Pure red cell aplasia RA : Renal Association

RCTs : Randomised control trials ROD : Renal osteodystrophy SCD : Sudden Cardiac Death

SHPT : Secondary hyperparathyroidism SLE : Systemic lupus erythematosus

spKt/V : Single-pool Kt/V

SRI : The solute removal index

stdKt/V : standard Kt/V

t-PA : Tissue plasminogen activator

TREAT: Trial to Reduce Cardiovascular Events with

Aranesp® Therapy

TSAT : Transferrin saturation URR : Urea reduction ratio

USRDS : United States Renal Data System

VC : Vascular calcification VDR : Vitamin D receptor

VDRA : Vitamin D receptor activators

WGs : Work groups

β2m : Beta 2-microglobulin

List of Tables

Cable No.	Citle Page V	lo.
Table (1):	Recommended dosing guidelines of currently available ESAs products in the United States	.29
Table (2):	Recommended dosing guidelines of currently available iron products in the United States	.31
Table (3):	Low turnover bone disease: biochemical features	.37
Table (4):	Therapeutic strategies	.37
Table (5):	Quality of Evidence	.59
Table (6):	Grading of strength of recommendation	.59
Table (7):	Gender and age distribution in the study population	.81
Table (8):	Different causes of ESRD in the study population	.82
Table (9):	Different comorbidities in the study population	.83
Table (10):	Work status in the study population	.84
Table (11):	Dependency status in the study population	.85
Table (12):	Frequency of HD sessions/week in the study population	.86
Table (13):	Duration of HD session in the study population	.87
Table (14):	Sponsoring status in the study population	.88
Table (15):	Type of vascular access in the study population	.89
Table (16):	Frequency of access failure in the study population	.90

List of Tables (Cont...)

Cable No.	Citle	Page No.
Table (17):	The levels of Hemoglobin, MCV, ar study during the last 6 months covered study	by the
Table (18):	Hemoglobin category in the study popul	ulation92
Table (19):	Serum Ferritin levels in the study popu	lation93
Table (20):	TSAT category in the study population	94
Table (21):	History of blood transfusion in the population	-
Table (22):	Type of ESA used by the study popular	tion96
Table (23):	Average hemoglobin of patients not ESAs.	_
Table (24):	History of iron injection in the population	
Table (25):	History of adjuvant therapy in the population	-
Table (26):	The levels of Calcium, phosphorus and during the last 6 months covered by the	
Table (27):	Serum calcium levels in the study popu	ılation100
Table (28):	Serum phosphorus level in the population	-
Table (29):	Serum calcium phosphorus product study population.	
Table (30):	Serum PTH levels in the study populat	ion103
Table (31):	Type of phosphorus binders used study population	-

List of Tables (Cont...)

Eable No.	Citle	Page No.
Table (32):	History of use of vitamin D supplemen	ıt105
Table (33):	Types of complications during HD ses the study population	
Table (34):	Viral status in the study population (He	CV)107
Table (35):	Type of dialysate used in the study popul	ılation108
Table (36):	Concentration of dialysate sodium used study population	
Table (37):	Concentration of dialysate potassium the study population	
Table (38):	Concentration of dialysate calcium use the study population	
Table (39):	Concentration of dialysate magnesium in the study population	
Table (40):	Measurement of adequacy of dialysis study population	

List of Figures (Cont...)

Figure No.	Citle	Page No.
Figure (1):	Schematic representation of the mech underlying anemia of CKD	
Figure (2):	Painful, cutaneous lesions in a patient calcific uremic arteriolopathy, CUA	
Figure (3):	Etiology of CKD in Egypt in 2008	67
Figure (4):	Gender distribution in the study popul	ation 81
Figure (5):	Different causes of ESRD in the population	•
Figure (6):	Different comorbidities in the population	•
Figure (7):	Work status in the study population	84
Figure (8):	Dependancy status in the study popula	ation 85
Figure (9):	Frequency of HD sessions/week in the population	
Figure (10):	Duration of HD session in the population	
Figure (11):	Sponsoring status in the study populat	ion 88
Figure (12):	Type of vascular access in the population	
Figure (13):	Frequency of access failure in the population	
Figure (14):	Hemoglobin category in the population	-
Figure (15):	Serum Ferritin levels in the study pop	ulation 93
Figure (16):	TSAT Category in the study population	on 94

List of Figures (Cont...)

Figure No.	Title Page No.
Figure (17):	History of blood transfusion in the study Population
Figure (18):	Type of ESA used by the study population 96
Figure (19):	History of iron injection in the study population
Figure (20):	History of adjuvant therapy in the study population
Figure (21):	Serum calcium levels in the study population
Figure (22):	Serum phosphorus level in the study population
Figure (23):	Serum calcium phosphorus product in the study population
Figure (24):	Serum PTH levels in the study population 103
Figure (25):	Type of phosphorus binder used by the study population
Figure (26):	History of use vitamin D supplement 105
Figure (27):	Types of complications during HD session in the study population
Figure (28):	Viral status in the study population 107
Figure (29):	Type of dialysate used in the study population 108
Figure (30):	Concentration of dialysate Sodium used in the study population
Figure (31):	Concentration of dialysate potassium used in the study population

List of Figures (Cont...)

Figure No.	Citle	Page No.
Figure (32):	Concentration of dialysate calcium the study population	
Figure (33):	Concentration of dialysate magnesi in the study population	

Introduction

Studies examining the link between research evidence and clinical practice have consistently shown gaps between the evidence and current practice. Some studies in the United States suggest that 30%–40% of patients do not receive evidence-based care, while in 20% of patients care may be not needed or potentially harmful. However, relatively little information exists about how to apply evidence in clinical practice, and data on the effect of evidence-based guidelines on knowledge uptake, process of care or patient outcomes is limited (*Locatelli et al.*, 2004).

In recent years, specific clinical guidelines have been developed to optimize the quality of anemia management secondary to chronic kidney diseases (CKD). As a result, the National Kidney Foundation Kidney Disease Outcome Quality Initiative (K\DOQI) guidelines and the Renal-European Dialysis and Transplantation Association best practice guidelines have been published in USA & Europe. Therefore; clinical practice guidance help individual physician and physicians as group to improve their clinical performance and thus raise standard of patient care towards optimum levels, They may also help to insure that all institution provide an equally good base line standard of care (*Cameron*, 1999).

Guidelines practiced on anemia and actual practices are much different with different places and patients according to treatment. Moreover, in individual countries and individual units within countries local circumstances relating to economic