

Automatic Arabic Speech Syllables Segmentation

By

Mohamed Sayed Abdelmonem Abdo

A Thesis submitted to the

Faculty of Engineering, Cairo University

In Partial Fulfilment of the Requirements for the Degree of

Doctor of Philosophy

In

BIOMEDICAL ENGINEERING AND SYSTEMS

Automatic Arabic Speech Syllables Segmentation

By

Mohamed Sayed Abdelmonem Abdo

A Thesis submitted to the

Faculty of Engineering, Cairo University

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

In

BIOMEDICAL ENGINEERING AND SYSTEMS

Under the supervision of

Prof. Ahmed Mohamed El-Bialy

Professor Department of
Systems and Biomedical Engineering
Faculty of Engineering, Cairo University

Prof. Ahmed Hisham Kandil

Professor Department of Systems and Biomedical Engineering Faculty of Engineering, Cairo University

Dr. Sahar Ali Fawzi

Associate Professor Department of Systems and Biomedical Engineering Faculty of Engineering, Cairo University

Automatic Arabic Speech Syllables Segmentation

By

Mohamed Sayed Abdelmonem Abdo

A Thesis submitted to the

Faculty of Engineering, Cairo University

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

In

BIOMEDICAL ENGINEERING AND SYSTEMS

Approved by the Examining Committee:	
Prof. Ahmed Mohamed El-Bialy	(Thesis Main Advisor)
Dr. Sahar Ali Fawzi	(Thesis Advisor)
Prof. Mohamed Riyad Elghoniemy	(Internal Examiner)
Prof. Samia Abdelrazik Mashali	(External Examiner)

Engineer: Mohamed Sayed Abd Elmonem Abdo

Date of Birth: 29 / 1 / 1981 **Nationality:** Egyptian

E-mail: Bioengmsa@yahoo.com

Registration Date : 1 / 3 / 2012 **Awarding Date :** / / 2018

Degree: Doctor of Philosophy

Department: Biomedical Engineering and Systems

Supervisors: Prof. Ahmed Mohamed El-Bialy

Prof. Ahmed Hisham Kandil

Dr. Sahar Ali Fawzi

Examiners: Prof. Ahmed Mohamed El-Bialy (Thesis Main Advisor)

Dr. Sahar Ali Fawzi
Prof. Mohamed Riyad Elghoniemy
Prof. Samia Abdel Razek Mashali
(External Examiner)

(Professor, Computer and Systems Department – Electronic Research Institute)

Title of Thesis: Automatic Arabic Speech Syllables Segmentation

Key Words: Arabic language, Automatic segmentation, syllable boundaries

allocation, Mel Frequency Cepstral Coefficients "MFCC".

Summary:

Syllables are the fundamental units of Arabic language. The proposed "Neural Network based Arabic Speech Segmentation System (NNASS)" is an adaptive Arabic speech syllable boundaries identifier that mainly serves as an automatic segmentation tool for speaker independent "Arabic speech verification (ASV)" and speech corpus/database construction systems. Cpestral peaks extracted from recorded speech signal within a certain validation thresholds assignment are considered probable boundaries. These probable boundaries are applied to NNASS to classify them into valid or invalid ones. An algorithm using neural networks is developed to train the features of valid boundaries/ cores. A program is developed to precisely identify the boundaries/cores from the test utterance, where the segmentation is done at their locations. The accuracy of NNASS was 87 % and 92.2 % identification rates with a semi-automatic labeling of the test dataset for verification within 10 and 20 milliseconds using two sample sizes. It will be shown that the system can be expanded to include more trained utterances for more than application.

Acknowledgment

First of all, I would like to thank *God* for selecting me to serve his words, always who guides me to the right path.

I am deeply indebted to my advisors and supervisors:

Prof. Dr. Ahmed Hisham Kandil, for his time and effort he devoted to the supervision and theoretical guidance to this work,

Prof. Dr. Ahmed Mohamed El-Bialy, for suggesting the subject of research, effort done in this work by his thoughts and references,

Dr. Sahar Ali Fawzy, for her sincere support, valuable help and useful discussions throughout the course of this work. They helped and pushed me in the proper directions.

In a special word of appreciation, I would like to extend my thanks and gratitude to (my *parents*, my *wife* and my *sons*) for their understanding support, encouragement and praying for me along these years.

TABLE OF CONTENTS

			Page
Acknov	vledgment		i
List of	Figures		v
List of	Tables		vii
List of	Equations		viii
Abbrev	iations		ix
Abstra	et		X
1. INTI	RODUCTIO	ON	1
1.1		ion	
1.2	Basic Con	ncepts in Speech	2
	1.2.1 U	tterances & Silence	2
	1.2.2 Pi	ronunciations	2
	1.2.3 Sp	peaker Dependence vs. Speaker Independence	2
	1.2.4 Sp	eech Recognition vs. Speech Verification	2
1.3	Neural N	etwork Arabic Speech Segmentation (NNASS) Overview	3
1.4	Thesis Ob	ojectives	3
1.5	Thesis Or	ganization	4
2. BAC	K GROUN	D AND RELATED WORKS	5
2.1	Introduct	ion	5
2.2	Voice Acc	oustics	6
	2.2.1 In	troduction	6
	2.2.2 V	oice Classification	6
	2.2.3 T	he Source-Filter Model	7
2.3	Segmentai	tion Concepts	8
	2.3.1 N	Netric-based segmentation	8
	2.3.2 P	honetic Detection without Boundaries	9
	2.3.3 S	trict Phonetic Segmentation and Labeling	9
	2.3.4 E	nergy-based segmentation	10
	2.3.5 M	Nodel-based segmentation	10
	2.3.6 T	he Phoneme Spotting Method	10
	2.3.7 T	he On Line Segmentation	11

	2.3.8	The Off-line Segmentation	11
2.4	Related	works	12
	2.4.1	Speech segmentation for Arabic Language	
	2.4.2	Speech segmentation for Tamil Language	14
	2.4.3	Speech segmentation for Maltese Language	14
	2.4.4	Speech segmentation for Mandarin Language	15
	2.4.5	Speech segmentation for French Language	16
2.5	Motivatio	on for the proposed method	16
3. SPE	ECH FE	ATURES	17
3.1	Introd	uction	17
3.2		Domain Features	
	3.2.1	Short-Term Energy	17
	3.2.2	Zero Crossing Rate	17
3.3	Frequ	ency Domain Features	19
	3.3.1	Frequency Spectrum	19
	3.3.2	Formants	19
	3.3.3	Linear Predictive Analysis (LPC)	21
	3.3.4	Log Area Ratio Coefficients (LAR)	21
	3.3.5	Mel-Frequency Cepstral Coefficients (MFCCs)	22
4. ARC	CHITEC	TURE OF ARABIC SPEECH SEGMENTATION SYSTEM	27
4.1	Introd	luction	27
4.2	The P	roposed Segmentation System	27
4.3	Featu	res Analysis	28
	4.3.1	Delta 1 st MFCC maxima analysis	28
	4.3.2	13-MFCCs combination analysis	29
4.4	Data C	Collection and Preprocessing	30
4.5	Trainir	ng Dataset	32
	4.5.1	Semi-automatic allocation of candidate reference boundaries _	32
	4.5.2	Automatic allocation of the nearest maxima to each candidate	
		reference boundary	33
4.6	Approa	aches of Segmentation	34
47	Ruildir	o the Neural Network Seomenter Models	34

4.8 Training Neural Network Models with Reference Data _	34
4.9 Classification of the Test Dataset	36
4.9.1 Determination of boundaries regions from test inp	out36
4.9.2 Validation and accuracy calculation	36
4.9.2.1 Semi-automatic Labeling	37
4.9.2.2 Verifications	37
5. RESULTS AND DISCUSSIONS	39
5.1 Introduction	39
5.2 Scope and Limitation of the Study	39
5.3 Test data preparation and result analysis	39
5.3.1 Test data preparation using semi-automatic label	ling39
5.3.2 Experimental test results	40
Experiment 1: Select the best speech processing variables	40
Experiment 2: Select the best speech features of discrimination	43
Experiment 3: Test effect of change number of MFCC on identific	ation efficiency _45
Experiment 4: Segmentation performance of the boundary based of	approach46
Experiment 5: Segmentation performance of the core based appro	oach56
Experiment 6: Segmentation performance of the KNN based appro	oach62
Experiment 7: Accuracy of automatic segmentation for speaker de	ependent65
Experiment 8: Reading's rate consistency measure for dataset rea	ders66
5.3.3 Work comparison	76
6. CONCLUSION AND RECOMMENDATIONS	77
6.1 Introduction	77
6.2 Conclusion	77
6.3 Thesis Achievements	78
6.4 Recommendations	78
REFERENCES	81
APPENDIX-A	
Percentages of Syllable Boundaries Locations	87
APPENDIX-B	91
Time Periods of Quranic Arabic Syllables	

List of Figures

Fig. 1.1	Maxima Extraction from Delta 1 st MFCC
Fig. 1.2	Brief diagram of proposed segmentation system principle
Fig. 2.1	Arabic Syllable Components
Fig. 2.2	The source filter model of speech.
Fig. 2.3	Output of the source filter model.
Fig. 2.4	Shape of voiced sound.
Fig. 2.5	Shape of unvoiced sound.
Fig. 3.1	Zero crossings of the signal.
Fig. 3.2	Short-term energy vs zero crossings for the word "seven".
Fig. 3.3	Spectrum and smoothed spectrum of speech.
Fig. 3.4	Spectral peaks of the sound spectrum.
Fig. 3.5	5-points local maxima
Fig. 3.6	Acoustic tubes speech production model
Fig. 3.7	Overview of the MFCC process
Fig. 3.8	Spectrogram of the speech signal
Fig. 3.9	Triangular filters used to compute Mel-Cepstrum
Fig. 3.10	Diagram of computational steps of MFCCs
Fig. 4.1	Block Diagram of the Proposed System
Fig. 4.2	Maxima Extraction from Delta 1 st MFCC
Fig. 4.3	Extraction of Candidates' Parameters
Fig. 4.4	Creation of Training Data
Fig. 4.5	Extraction of Nearest Maxima and their Features of Reference (HSARY) Neural Network Structure

- Fig. 4.7 Nearest Extraction at Boundaries Regions of Test Reader (BUKTR)
- Fig. 4.8 Validation of Resultant Boundaries
- Fig. 5.1 Diagram analysis for the identified boundaries from the test readers
- Fig. 5.2 Scheme of the second approach
- Fig. 5.3 The three types of the second approach
- Fig. 5.4 Sample of speaker dependent test result
- Fig.5.5 Gaussian distribution of CV syllables period's consistency for AFASY reader.
- Fig.5.6 Gaussian distribution of CV syllables period's consistency for AKHDA reader.
- Fig. 5.7 Gaussian distribution of CV syllables period's consistency for AUOOB reader.
- Fig. 5.8 Gaussian distribution of CV syllables period's consistency for BASFR reader.
- Fig. 5.9 Gaussian distribution of CV syllables period's consistency for BASIT reader.
- Fig. 5.10 Gaussian distribution of CV syllables period's consistency for BUKTR reader.
- Fig. 5.11 Gaussian distribution of CV syllables period's consistency for GHMDY reader.
- Fig. 5.12 Gaussian distribution of CV syllables period's consistency for HSARY reader.
- Fig. 5.13 Gaussian distribution of CV syllables period's consistency for HZYFI reader.
- Fig. 5.14 Gaussian distribution of CV syllables period's consistency for JBRIL reader.
- Fig. 5.15 Gaussian distribution of CV syllables period's consistency for SUDIS reader.
- Fig. 5.16 Gaussian distribution of CV syllables period's consistency for SHTRY reader.
- Fig. 5.17 Gaussian distribution of CV syllables period's consistency for SHRIM reader.
- Fig. 5.18 Gaussian distribution of CV syllables period's consistency for REFAY reader.
- Fig. 5.19 Gaussian distribution of CV syllables period's consistency for QASIM reader.
- Fig. 5.20 Gaussian distribution of CV syllables period's consistency for MNSWY reader.
- Fig.5.21 Gaussian distribution of CV syllables period's consistency for MAQLY reader.
- Fig. 5.22 Gaussian distribution of CV syllables period's consistency for TBLWY reader.

List of Tables

Table 4.1:	Dataset Build for this Study.
Table 4.2:	Description of Training Dataset.
Table 5.1:	Dataset used to select the best speech processing variables.
Table 5.2:	Trials of selecting the best speech processing variables
Table 5.3:	Test the best representation features of speech.
Table 5.4:	Effect of changing the number of MFC coefficients
Table 5.5:	Dataset used to experiment the first approach.
Table 5.4:	Effect of changing the number of MFC coefficients
Tables (5.6-5	.20): Validation of Results for the Test Utterances of the First Approach.
Table 5.21:	Validation of Results of a Sample Test Utterance from First Method of the Second Approach
Table 5.22:	Validation of Results of a Sample Test Utterance from Second Method of the Second Approach.
Table 5.23:	Validation of Results of a Sample Test Utterance from Third Method of the Second Approach.
Table 5.24:	Dataset used to experiment the third approach.
Table 5.25:	Validation of Results of a Sample Test Utterance from the 3 rd Approach.
Table 5.26:	Comparison of the performance of the related works with NNASS
Table A:	Percentages of Syllable Boundaries Locations.
Table B:	Time Periods of Quranic Arabic Syllables.

List of Equations

Equation (1): Short-term energy.

Equation (2): Zero crossing rates.

Equation (3): Fourier Transform.

Equation (4): Spectrum from FFT of the estimated AR model parameters.

Equation (5): The corresponding formula for the LPC model.

Equation (6): The relationship between the LAR coefficients and the LPC.

Equation (7): Mel-Frequency Transformation.

Equation (8): The most common DCT definition of a 1-D sequence.

Equation (9): The inverse transformation.

Equation (10): Accuracy calculation.

Abbreviations

(TTS)	Text to speech systems
(ANN)	Artificial Neural Networks
(CAPL)	Computer Aided Pronunciation Learning
(BRC)	Boundary Region Counter
(SBR)	Starting Boundary Region
(EBR)	Ending Boundary Region
(DFT)	Discrete Fourier Transform
(ASR)	Automatic Speech Recognition
(ASV)	Automatic Speech Verification
(MSA)	Modern Standard Arabic
(SROL)	Sounds of the Romanian Language
(FFT)	Fast Fourier Transform
(HMM)	Hidden Markov Model
(HTK)	Toolkit for the recognition
(LPC)	Linear Predictive Coefficients
(LAR)	Log Area Ratio
(MLE)	Maximum Likelihood Estimation
(MFCC)	Mel-Frequency Cepstral Coefficient
(ZCR)	Zero Crossing Rate
(STE)	Short-Term Energy
(KNN)	K- Nearest Neighbor.
(BRIV)	Boundary Regions Indicator Vector.

ABSTRACT

Syllables are fundamental units of Arabic speech that play a vital role in different speech applications such as ASR, ASV and speech corpus/database construction systems. The speech utterance is a sequence of syllables. There is a significant difference in acoustic energy between syllables. The goal of this work is to develop a precise speaker independent system for the automatic segmentation of continuous speech into syllables. The proposed Neural Network Arabic Speech Segmentation system (NNASS) implements two approaches for Arabic speech segmentation using neural networks as an adaptive syllable boundaries identifier, boundaries features based approach and cores features based approach. The training set of NNASS is composed of a number of different candidate boundaries features from reference voices. NNASS behaves as a multiple classifier; it is capable of recognizing syllable boundaries of Arabic utterances irrelevant of their nature. The system was tested by applying continuous audio signals. Speech signal features and its cepstral peaks were extracted, and applied to NNASS to classify them into valid / invalid boundaries, through extracting the discriminating features for the syllable boundaries in Arabic speech, building the Neural Network for the identification of the boundaries and developing an algorithm for the automatic segmentation of the speech stream.

A set of 18 readers representing different Arabic countries was selected; each recited 15 continuous Quranic utterances "verses" constituting a total of 270 utterances containing 1908 boundaries. An analysis to select the best acoustical representation features for syllable boundaries was performed. An algorithm to train neural networks neurons was developed based on features of valid boundaries/cores, then a validation phase was achieved to locate syllables boundaries.

The accuracy of NNASS reached up to 87% and 92.2% identification rates with a semi-automatic labeling of the test dataset for verification within 10 and 20 milliseconds. This system proved the validity of the concept of using MFC difference feature as a mark for inter-syllables transitions that can be used in several applications.

CHAPTER 1 INTRODUCTION

CHAPTER ONE INTRODUCTION

1.1 Introduction

The aim of this thesis is to develop a precise system for Arabic speech syllabification (i.e., segmentation of Arabic utterance into syllables units). Segmentation and labeling of a small sized acoustic corpus, of 2-3 hours recordings of uttered verses for the speech database construction, [1] is a time consuming (inconsistent) process. The proposed solution is an automatic segmentation algorithm based on neural networks models and embedded cues related to syllable boundaries to produce accurate syllable segmentation. This algorithm is used to segment Quranic verses and to form a corpus for recitation verification systems. Segmentation of speech at syllable level is an essential phase in many applications, such as text to speech systems (TTS), teaching the recitation rules of Holy Quran automatically, teaching Arabic language pronunciation for non-native speakers, correct the pronunciation and speech disorders for children and patients having defects in their speech production system. Applications such as speech verification and speech synthesis require highly accurate and consistent segmentation [2, 3]. Figure 1.1 shows a sample of Arabic utterance segmented at the syllable level using the delta first MFC coefficient as indicators to the syllable boundaries.

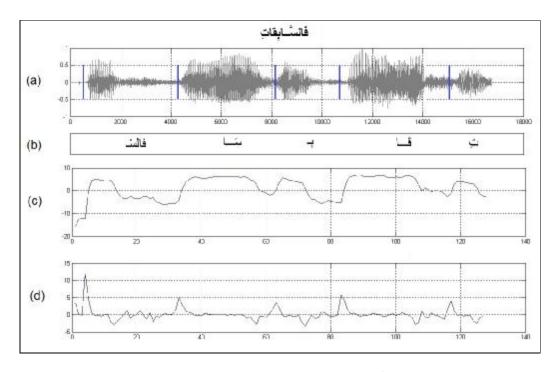


Fig. 1.1: Maxima Extraction from Delta 1st MFCC.

(a) Input speech signal with marked locations of syllables boundaries. (b) Syllables transcriptions (c) 1st MFCC. (c) Delta 1st MFCC with local maxima.