

ROLE OF MAGNETIC RESONANCE SIALOGRAPHY IN DIAGNOSIS OF SALIVARY GLAND DISEASE

Thesis

Submitted for partial fulfillment of the requirement of M.D. Degree in *Radiodiagnosis*

By

Yasser Metwally Mostafa Khattab

M.B.B.Ch: MCs Radiodiagnosis

Supervised by

PROF. DR. OMAR HUSSEIN OMAR

Professor of Radiodiagnosis
Faculty of Medicine - Ain Shams University

PROF. DR. MOUNIR SOBHY GUIRGUIS

Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University

ASSIT. PROF. DR. NAGLAA SHEBRIA

Assistant Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2013

Dedication

To my great Family:

M y Parents

My lovely Wife &

Children

My Brother & Sister

Acknowledgement

First, I wish to express my deep thanks, sincere gratitude to ALLAH, who always helps me, care for me and granted me the ability to accomplish this thesis.

I would like to express my deepest gratitude, thanks and gratefulness to **Prof. Dr. Omar Hussein Omar**, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his enthusiastic support, continuous encouragement valuable scientific advices, and great help through out of the accomplishment of this work.

I am very grateful to **Prof. Dr. Mounir Sobhy Guirguis**, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his kind supervision, support, indispensable suggestion, and great help through out of course of my thesis.

My sincere thanks to **Dr. Naglaa Shebria**, Assistant professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her kind and meticulous supervision, support, help, valuable supervision all through the work.

Words can never express my sincere thanks to Misr Radiology Center, for their help performing this research's cases.

I would like to express my everlasting gratitude to all my dear friends, colleagues and all who offered me any kind of help, encouragement wishing them the best of all.

Yasser Metwally Mostafa Khattab

دور تصوير قنوات الغدد اللعابية بالرنين المغناطيسي في تشخيص أمراض الغدد اللعابية

رسالة مقدمة توطئة للحصول على درجة الدكتوراه في الأشعة التشخيصية

هن طبیب/ یاسر متولی مصطفی خطاب ماجستیر الأشعة التشخیصیة

تحت إشراهم

أ.د./ عمر حسين عمر

أستاذ الأشعة التشخيصية كلية الطب _ جامعة عين شمس

أ.د./ منير صبحي جرجس

أستاذ الأشعة التشخيصية كلية الطب _ جامعة عين شمس

أ.م.د./ نجلاء حسين شبرية

أستاذ مساعد الأشعة التشخيصية كلية الطب – جامعة عين شمس كلية الطب كلية الطب جامعة عين شمس

سورة البقرة (٣٢)

CONTENTS

Pag	ge
INTRODUCTION & AIM OF THE WORK	1
ANATOMICAL ASPECTS	4
PATHOLOGICAL CONSIDERATIONS	22
PATIENTS AND METHODS	87
RESULTS	94
CASE PRESENTATION	103
DISCUSSION	121
SUMMARY AND CONCLUSION	129
REFERENCES	131
ARABIC SUMMARY	_

LIST OF ABBREVIATIONS

2 D : Two dimensional

3 D : Three dimensional

ADC : Apparent diffusion coefficient

CISS : Constructive interference in steady-state

CS : Conventional sialography

CT : Computed Tomography

DWEPI: Diffusion – weighted echo-planar imaging

EXPRESS: Extended - phase conjugate - symmetry rapid spin-echo sequence

FASE : Fast asymmetric spin echo

FFT : Fast Fourier transform

FOV : Field of view FSE : Fast spin echo

GRASE : Gradient and spin echo

HASTE : Half-Fourier acquisition single shot turbo spin echo

HR-MRS : High – resolution MR sialography

MIP : Maximum intensity projection

MRS : Magnetic resonance sialography

NMV : Net magnetization vector

RARE : Rapid acquisition with relaxation enhancement

RF : Radiofrequency

SE : Spin echo

SNR : Signal to noise ratio

SSTSE : Single shot turbo spin echo

STIR : Short T1 inversion recovery

TE : echo time

TE eff: effective echo time

TI : Inversion time

TR : Repetition time

TSE: Turbo spin echo

US : Ultrasonography

LIST OF FIGURES

Fig. No.	Title	Page
1	Anatomy of salivary glands	6
2	Opening of parotid duct	8
3	Opening of submandibular duct	11
4	Axial graphic of skull base showing parotid space	13
5	Axial graphic of the parotid space at the level of C1 vertebral body	14
6	Axial graphic of oral cavity with emphasis on the submandibular space	16
7	Axial T1 weighted image revealing parotid gland and its relations	18
8	Axial T2 with fat suppression showing that the parotid gland is higher signal than the surrounding muscles of the suprahyoid neck	19
9	Coronal T1 weighted image for the submandibular gland	20
10	Axial T2 weighted image of submandibular gland and its relations	20
11	Sagittal oblique 3D EXPRESS MIP reconstruction MR sialography	21
12	Metal cannula used for sialogram	43
13	Lateral oblique view showing normal sialogram of submandibular gland	44
14	Ultrasonographic image showing a stnone	45
15	CT of parotid gland and its duct	46
16	Axial CT of submandibular gland	46
17	Cone beam CT sialography	49
18	Radionuclide isotope of salivary glands	51
19	Axial T1 image with fat saturation	52

Fig. No.	Title	Page
20	X ray lateral view of the neck	54
21	Lateral oblique conventional sialographic image	55
22	Lateral oblique conventional sialographic image	56
23	Sialogram of the right and left parotid glands with juvenile recurrent parotitis	57
24	Tangential AP view of right parotid sialogram in a patient with Sjogren's syndrome	58
25	Left parotid sialogram	58
26	Parotid gland cysts with large cysts on the left side and smaller cysts on the right side	59
27	Sagittal MR sialography of parotid glands from a xerostomia patient without Sjogren'syndrome	62
28	Sagittal oblique 3D EXPRESS MIP reconstruction MR sialography of submandibular gland	63
29	Comparison between MRI sialography versus conventional sialography method as regard main duct	96
30	Comparison between MRI sialography versus conventional sialography method	97
31	Comparison between MRI sialography versus conventional sialography method as regard stones	98
32	Comparison between MRI sialography versus conventional sialography method as regard strictures	99
33	Comparison between MRI sialography versus conventional method as regard sialectasis	100
34	Plain X ray oblique view of showing a radiopaque calculus at submandibular region	103
35	AP and lateral oblique views of left submandibular sialography showing the calculus within proximal end of left submandibular duct	104
36	(A) coronal and (B) axial MR sialogram of left submandibular gland	105
37	Lateral oblique view of conventional sialogram	107
38	Post evacuation film of conventional sialography	107

Fig. No.	Title	Page
39	Axial T2 MR image	108
40	Axial single shot MR sialogram	109
41	Left oblique view of right parotid conventional sialogram	110
42	Sagittal single shot MR sialogram	111
43	Coronal T2 MR image of neck	111
44	AP view of conventional left submandibular sialogram	112
45	Axial and sagittal Left submandibular MR sialogram	113
46	Conventional Right submandibular sialogram	114
47	Axial heavy T2 MR image	115
48	Sagittal single shot T2 MR sialography	115
49	Right parotid sialogram	116
50	Right parotid MR sialogram	117
51&52	Axial heavy T2 MR images	119
53	MR sialogram	120

LIST OF TABLES

Table No.	Title	Page
1	Different diseases affecting salivary glands	22
2	Comparison between MRI sialography versus conventional sialography method as regard main duct	96
3	Comparison between MRI sialography versus conventional sialography method	97
4	Comparison between MRI sialography versus conventional sialography method as regard stones	98
5	Comparison between MRI sialography versus conventional sialography method as regard strictures	99
6	Comparison between MRI sialography versus conventional method as regard sialectasis	100
7	Validity of MRI versus conventional method	101

INTRODUCTION

The salivary glands are; pair of parotid; pair of submandibular and pair of sublingual glands (*Grainger and Allison*, 1997).

Different diseases affect the salivary glands such as; inflammatory diseases, autoimmune diseases and neoplastic diseases (*Cotran et al.*, 1994).

Imaging of the main salivary glands and ducts can be performed with conventional sialography, sonography, computed tomography and magnetic resonance imaging (*Jager et al.*, 2000).

Because of its excellent delineation of ductal system, conventional sialography currently is still considered the standard modality for assessing ductal abnormalities (*Becket et al.*, 2000).

In the recent years, rapid technical development has improved accuracy of non-invasive radiological methods including ultrasonography and magnetic resonance imaging. These methods have been widely replacing conventional invasive examinations in scientific research as well as in clinical practice (*El-Miedany*, 2004; *Takagi et al.*, 2005 and *Tanaka et al.*, 2008).

The introduction of Magnetic resonance sialography protocol by *Lomas et al.* (1996) was the first step towards non-invasive fast easy technique for demonstration of the duct

system. This technique is based on principles of MR hydrography, in which T2-Weighted pulse sequences are used to image static fluid. Consequently, stationary saliva within the salivary gland ducts could be seen to have high signal intensity while solid organs had low signal intensity. In addition flowing blood had little or no measurable signal (*Gadodia et al.*, 2010).

MR sialography has several advantages over conventional X-ray sialography. These include the absence of any requirement to cannulate the duct and the lack of ionizing radiation. Because the technique is completely non-invasive, it is likely to enable a more accurate assessment of duct caliber, and duct orifice abnormalities will not be obscured as they are with the conventional method. The examination is not contra-indicated by infection. Because saliva is the contrast medium for the technique, a complete ductal occlusion does not preclude imaging the upstream section of the duct system. Finally, this technique does not rely on any manual skills related to cannulation and has been implemented on a widely available conventional clinical MR system (*Lomas et al.*, 1996 and Heverhagen et al., 2000).

MR sialography had been used in the examination of patients with salivary duct diseases including the evaluation of sialolithiasis, duct stenosis and sialadenitis (*Varghese et al., 1999; Kalinowski et al., 2002; Morimoto et al., 2004 and Tanaka et al., 2007*).

AIM OF THE WORK

This study aims to:

Assess the role of Magnetic Resonance Sialography in imaging of salivary gland diseases by using conventional sialography as a gold standard.

SALIVARY GLANDS

Saliva serves multiple and important functions. It plays a key role in taste, chewing, speech, digestion and oral health. Saliva is a solvent for the chemical taste components of the food, a lubricant for all oral mucosal surfaces as well as the food bolus, and a supersaturated reservoir of biominerals, such as calcium, phosphate and fluoride, which continually bathes the teeth, facilitating their mineralization. Saliva also buffersainst sudden drop in oral PH that can cause teeth to lose their superficial mineral substance. Saliva contains antimicrobial agents that directly kill pathogens (*Berg et al.*, 2003; *De almeida et al.*, 2008 and Garcia-Godoy & Hicks, 2008).

Three major, paired salivary glands produce the majority of saliva: the parotid, the submandibular and the sublingual glands. In addition 600-1,000 minor salivary glands line the oral cavity and oropharynx, contributing a small portion of total salivary production (*Silvers and Som*, 1998).

Embryology:

The major salivary glands develop from the $6^{th} - 8^{th}$ weeks of gestation as an outpouching of oral ectoderm into the surrounding mesenchyme (*Silvers and Som*, 1998).

The growth of the bud is stimulated by underlying ectomesenchyme. This cord of cells branches several times and