التصوير المتقدم للجهاز العصبي في تشخيص مرض الميتوكوندريا في الأطفال

بروتوكول رسالة توطئة للحصول على درجة الماجيستير في طب الأطفال

مقدمة من الطبيبة / أمل فتحي عبد السميع

> بكالوريوس الطب والجراحة كلية الطب – جامعة عين شمس٠٠٠٠

تحت إشراف أ.د / هدى يحيى طموم أستاذ طب الأطفال كلية الطب- جامعة عين شمس

د./ خالد أبو الفتوح أحمد أستاذ الأشعة التشخيصية كلية الطب جامعة عين شمس

د./ إيمان علي عبد الحميد

استاذ مساعد طب الأطفال كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٣

Advanced Neuroimaging Technique In Diagnosis of Mitochondrial Disease In Children

Thesis

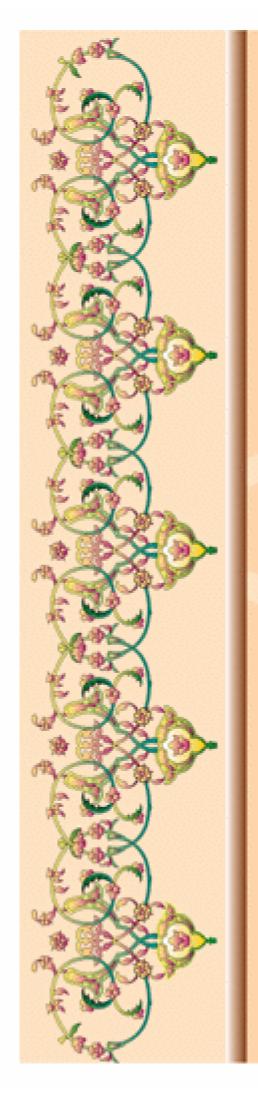
Submitted for partial fulfillment of master degree in pediatrics

Presented By **Amal Fathy Abd El-Samie**

M.B., B.Ch.(2005)

Under Supervision of **Prof. Dr. Hoda Yahya Tomoum**

Professor of Pediatrics Faculty of Medicine, Ain Shams University


Dr.Khaled Abou alfotouh Ahmad

Assistant Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

Dr. Iman Ali Abd El-Hamid

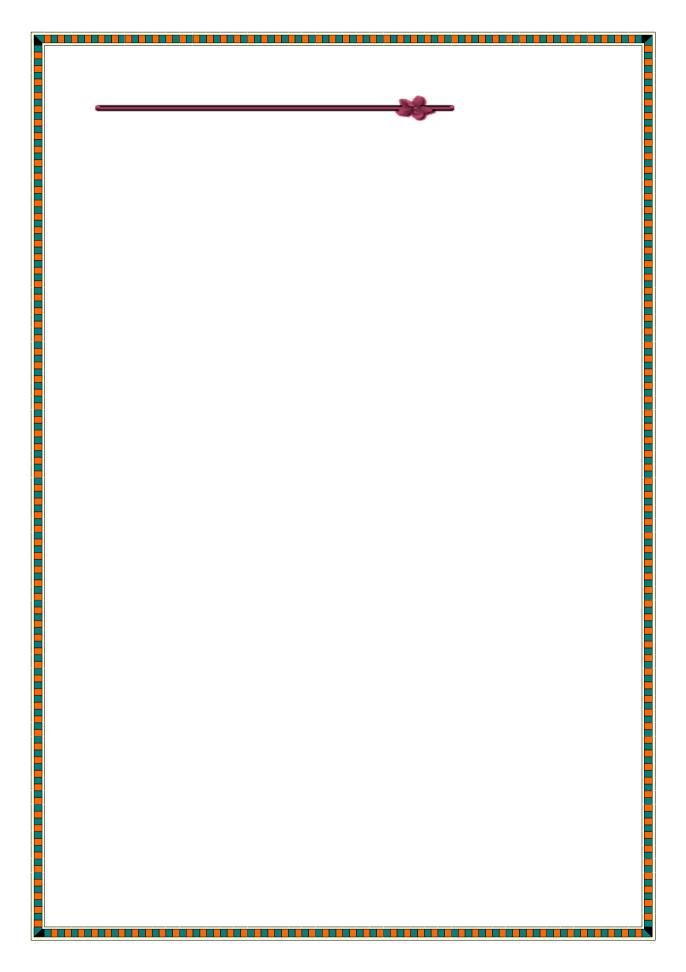
Assistant Professor of Pediatrics Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University

" قَالُوا سُبْحَانَكَ لَا عِلْمَ لَنَا إِلَّا مَا عِلْمَ لَنَا إِلَّا مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ عَلَّمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ " الْعَلِيمُ الْحَكِيمُ "

صدق الله العظيم البقرة الآية ٣٢

Acknowledgement


At first and foremost thanks to "God" who gave me the power to finish this work.

I want to express my greatest gratitude and thanks to **Prof. Dr. Hoda Yahya Tomoum** Professor of Pediatrics, Faculty of Medicine - Ain Shams University for her continuous supervision and her continuous encouragement. It has been an honor and a privilege to work under her generous guidance and supervision.

It is a pleasure to express my deepest thanks and profound respect to **Dr.Khaled Abou alfotouh Ahmad** assistant Professor of radiodiagnosis, Faculty of Medicine - Ain Shams University for his valuable suggestions, good support and unlimited help in the practical part of the work.

Words can never express my gratitude and thanks to Dr. Iman Ali Abd El Hamid & Dr. Rania Hamed Shatla assistant professors of Pediatrics , Faculty of Medicine- Ain Shams University; I owe them very much for their fruitful encouragement, great support, meticulous supervision and continuous guidance throughout this work.

Finally, my deep thanks and best wishes to my patients and their families, the staff of the Pediatric Department in the neurology clinic as their cooperation was indispensable for the performance of this work. Last but not least, I have to thank my family for lending me their help and support, which enabled me to carry out this work.

Dedication

To my parents ,to my Husband ,to my friends , to my sisters ,to my sons Eyad and Malek And To all suffering children .

CONTENTS

	PAGE
LIST OF ABBREVIATIONS	I
LIST OF TABLES	III
LIST OF FIGURES	IV
INTRODUCTION	1-4
AIM OF THE WORK	5
REVIEW OF LITERATURE	6–52
PATIENTS AND METHODS	53 – 57
Results	58-87
DISCUSSION	88- 106
SUMMARY	107-110
Conclusion	111
Recommendations	112-113
REFERENCES	114-142
ARABIC SUMMARY	143-145

LIST OF ABBREVIATIONS

	<u> </u>
ALT	Alanine transferase
AST	Aspartate transferase
ATP	adenosine triphosphate
Cho	Choline
Co Q10	coenzyme Q10
СРЕО	Chronic progressive external
	ophthalmoplegia
Cr	Creatine
Cyt c	cytochrome c
DPT	Diphteria,pertussis,tetanus
ETC	electron transport chain
IUGR	Intra uterine growth retardation
KSS	Kearns-Sayre syndrome
LHON	Leber Hereditary Optic
	Neuropathy
MD	Mitochondrial disease
MDC	mitochondrial disease criteria
MELAS	Mitochondrial Encephalopathy,
	Lactic Acidosis and Stroke like
	episodes
MERRF	Myoclonic Epilepsy, Ragged Red
	Fibers
MI	Myo-inositol
MILS	Maternally inherited Leigh
	syndrome
mmol	Milli-molecule
MnSOD	Mitochondrial manganese
	superoxide dismutase
MRI	Magnetic Resonance Imaging
MRS	Magnetic Resonance spectroscopy

I

LIST OF ABBREVIATIONS

msec	millisecond
mtDNA	Mitochondrial DNA
NAA	N-acetylaspartate
NARP	Neuropathy, Ataxia, Retinitis
	Pigmentosa
nDNA	Nuclear DNA
NO	nitric oxide
ONOO	peroxynitrite
OXPHOS	oxidative phosphorylation
PEO	progressive external
	Ophthalmoplegia
ppm	Part per miniute
ROS	reactive oxygen species
rRNAs	ribosomal RNAs
TE	Time to echo
tRNAs	transfer RNAs

LIST OF TABLES

N	Title	Page
O		
1	Clinical phenotypes of mitochondrial syndromes	28
2	Red-Flag Findings in Mitochondrial Disease	31
3	Nonspecific Findings in Mitochondrial Disease	33
4	Baseline Screening Tests for Mitochondrial Disease: Initial	36
	Evaluation.	
5	Demographic data of the studied patients	58
6	Maternal and perinatal history	60
7	Neurological manifestations of the studied patients	61
8	Other systems affected in the studied patients	63
9	Routine Laboratory Investigations	65
10	CT brain Findings	66
11	MRI brain Findings	67
12	MRS brain findings of the studied patients	67
13	Collective MRS brain findings.	69
14	Other investigations	69
15	Clinical,laboratory and neuroimaging scoring.	71
16	Data of patients with definite MD using Wolf and Smeitink (2002)	73
	criteria.	
17	laboratory and neuroimaging finding in patients with definite MD	74
10	using Wolf and Smeitink (2002) criteria.	
18	plasma amino acids by plasma amino acid analyzer	75
19	Urinary Organic Acid analysis in the studied patients:	76
20	Demographic data and clinical data.	77
21	Laboratory and neuroimaging.	79
22	Routine Laboratory Investigations of the studied patients.	81

LIST OF FIGURES

NO	Title	Page
1	Mitochondrial structure	7
2	Respirstory chain	10
3	ROS production in the cell	13
4	The vicious circle mitochondrial dysfunction	15
5	Initiating the diagnostic evaluation for suspected mitochondrial disease	37
6	MRI and MRS from a boy with Leigh syndrome.	41
7	Axial MR images in a child with MELAS lesions	43
8	MRI in a patient with KSS	44
9	AxialFLAIR imaging in a child with Alper disease	45
10	MRS findings in mitichondrial disease	48
11	Age distribution in the studied patients	59
12	the neurological manifestations of the studied patients	62
13	the Ophthalmic, GIT, Constitutional manifestations in the studied patients.	64
14	Axial T2 MRI image of a 4years old male patient	83
15	MRS of a 4 years old male patient	84
16	Axial T2 MRI image of a male patient 2 years old	85
17	MRS of a 2 years old male patient	85
18	MRI of a 3 years old male patient with leigh	87

Introduction

The clinical recognition of mitochondrial disease is often a challenging endover. Genetically based, primary mitochondrial dysfunction presents as a heterogeneous group of disorders, which together are now recognized to constitute the most common neurometabolic disorder of childhood.(Sanderson et al.,2006).

Epidemiologic studies of mitochondrial disease are limited by disease heterogeneity and underdiagnosis. Prevalence figures are less accurate than incidence figures in estimating mitochondrial disease frequency due to the high childhood mortality of these disorders. (**Dimauro and Davidzon.,2005**).

Mitochondrial diseases are usually progressive and multisystemic. Typically affected organs are those with a high energy demand, including skeletal and cardiac muscle, endocrine organs, kidney, nonmucosal components of the intestinal tract, retina, and the central nervous system. However, virtually any organ or tissue can be involved. (Dimauro and Davidzon.,2005).

As a general rule, the involvement of 3 or more organ systems without a unifying diagnosis should raise

suspicion for mitochondrial disease. Although effective treatments remain elusive, definitive diagnosis is crucial for permitting appropriate symptom management, as well as accurate prognostic and recurrence-risk counseling. (Dimauro and Davidzon., 2005).

Mitochondrial disease may present with "any symptom in any organ at any age, but some symptoms and signs truly are more suggestive of a mitochondrial disorder than others. (**Munnich et al.,1996**)

These features warrant the initiation of a baseline diagnostic evaluation for mitochondrial disease. (**Richard** et al.,2007).

In contrast, there are a multitude of nonspecific symptoms that frequently occur in infants and children with mitochondrial disease but have a broad differential diagnosis, and more often lead to other clear diagnoses. (Richard et al.,2007).

Thus, the nonspecific symptoms, particularly if they occur in isolation, do not indicate a mitochondrial problem per se. (**Richard et al.,2007**).

However, when they are present in combination, the likelihood of a mitochondrial disorder increases, particularly if the nonspecific features involve different