A Study into a Possible Mechanism of the Analgesic Effect of Ibuprofen in a Model of Post-surgical Pain beyond the Conventional COX Inhibition Theory

Thesis Submitted for partial fulfillment of M.D. in Pharmacology

> Sherin Shafik Tawfik MB BCh, M.Sc.

Assistant lecturer of Pharmacology Faculty of Medicine Ain-Shams University

Supervised by

Prof. Somaia Ibrahim Masoud **Professor of Pharmacology**

Faculty of Medicine Ain-Shams University

Dr. May Ahmed Amin Hamza

Assistant Professor of Pharmacology Faculty of Medicine Ain-Shams University

Dr. Mohamed Hamdy Ali Bahr Lecturer of Pharmacology

Faculty of Medicine Ain-Shams University

Faculty of Medicine Ain Shams University 2013

ACKNOWLEDGMENT

First of all, thanks to Allah, to whom I relate any success in achieving any work in my life.

I am greatly honored to express my high appreciation and gratitude to **Prof. Dr. Somaia Ibrahim Masoud,** Professor of Pharmacology, Faculty of medicine, Ain Shams University, for her gracious supervision, precious advice, and continuous encouragement through the whole research.

Words can never express my gratitude and thanks to **Assistant Professor Dr. May Ahmed Amin Hamza**, Assistant Professor of Pharmacology, Faculty of medicine, Ain Shams University, for her kind help, meticulous supervision and continuous support and guidance throughout this work.

Also I would like to express my appreciation to **Dr. Mohamed Hamdy Ali Bahr**, Lecturer of Pharmacology, Faculty of medicine, Ain Shams University, for his fruitful encouragement and valuable advice and support.

A special thank you goes to my "second family" all my colleagues and my professors in the department and its head on top, for their unlimited help all through the way.

Finally, I wish to thank all my family especially my mother for her patience and blessings and my friends who shared each in their own special way in this modest piece of work.

Sherin Shafik

List of Contents

Lis	st of Abbreviations	i	
Lis	st of Tables	ii	
Lis	st of Figures	iv	
Abstractv			
1.	Review of literature	1	
	1.1. Pain: A Historical Perspective	1	
	1.2. Pain Pathway	5	
	1.3. Nitric oxide & its relation to pain	14	
	1.4. Adrenergic system & its relation to pain	18	
	1.5. Types of pain	21	
	1.6. Acute postoperative pain	23	
	1.7. Applications of Animal Models of Nociception	24	
	1.8. Drugs used for the management of postoperative pain	31	
	1.9. Is inhibition of prostaglandin synthesis the sole mechan	ism	
	underlying the pharmacological actions of NSAIDs?	35	
	1.10.Adrenergic System and its Relation to NSAIDs	38	
	1.11.Nitric oxide and its Relation to NSAIDs	39	
	1.12.Preemptive analgesia	42	
2.	Aim of the work	43	
3.	Materials and Methods	45	
4.	Results	58	
5.	Discussion	96	
6.	Summary and Conclusion	115	
References118			
Arabic Summary			

List of Abbreviations

5-HT Serotonin

AMPA a-amino-3-hydroxy 5-methyl-4- soxazeloproprionic acid

ASA Acetyl salicylic acid

BL Baseline

cGMP cyclic guanosine monophosphate **CGRP** Calcitonin gene-related protein

CCK CholecytokininCOX CyclooxygenaseDRG Dorsal root ganglia

GABA Gamma-Aminobutyric acid

h hours

i.c.v Intracerebroventricularly

i.p Intraperitoneallyi.t Intrathecally

IASP International Association for the Study of Pain

NA Noradrenaline
NE Norepinephrine

NMDA N-methyl-D-aspartate

NO Nitric oxide

NOARG L-NG-nitro arginine
NOS Nitric oxide synthase

NSAID Non-steroidal anti-inflammatory drug

p.o per os

PG Prostaglandin

RVM Rostral ventromedial medulla

SG Substantia gelatinosa

VFWT Paw-withdrawal threshold to von Frey filaments

List of Tables

Table 1	Most common animal models of pain25
Table 2	Methods to assess hyperalgesia and allodynia27
Table 3	The calculated 60% threshold (g) in the naïve & incised groups
Table 4	The calculated 60% threshold (g) in the incised and ibuprofen treated groups
Table 5	The calculated 60% threshold (g) in the incised and ibuprofen (100mg/kg) treated groups administered either 30 min before incision or 20 min following incision70
Table 6	The calculated 60% threshold (g) in the incised & L-NAME (50 mg/kg) treated groups
Table 7	The calculated 60% threshold (g) in the incised, L-Arginine 600mg/kg, pre-incisional ibuprofen 100mg/kg and L-Arginine 600mg/kg + ibuprofen 100mg treated groups76
Table 8	The calculated 60% threshold (g) in the incised, yohimbine (4mg/kg), ibuprofen (100mg/kg) and yohimbine + ibuprofen treated groups
Table 9	The calculated 60% threshold (g) in the incised, prazosin (2mg/kg), ibuprofen (100mg/kg) and prazosin + ibuprofen treated groups
Table 10	Spinal nitric oxide concentration (µmol/l) in the naïve & incised groups
Table 11	Spinal nitric oxide concentration (µmol/l) in the incised, ibuprofen 30, 100 and 300mg/kg treated groups87
Table 12	Spinal nitric oxide concentration (µmol/l) in the incised and ibuprofen (100mg/kg) treated groups (pre-incisional and post-incisional)
Table 13	Spinal nitric oxide concentration (µmol/l) in the incised & L-NAME (50 mg/kg) treated groups91

T		1		
	n	М	Δ	v

Table 14	Spinal nitric oxide concentration (µmol/l) in the incised,
	ibuprofen (100mg/kg) treated and yohimbine (4mg/kg) +
	pre ibuprofen (100mg/kg) treated groups93

List of Figures

Figure 1	Line diagram shows the principle of pain transmission as described by René Descartes (1596-1650)
Figure 2	Ronald Melzack and Patrick Wall's Gate Control theory of pain
Figure 3	The main anatomic areas of pain modulation5
Figure 4	The main neurotransmitters related to nociceptors
Figure 5	Pain pathways from periphery to brain9
Figure 6	Central sensitization
Figure 7	Anatomy of the pain pathway12
Figure 8	L-arginine– NO–cyclic GMP pathway15
Figure 9	Suggested NO and cGMP signaling pathways during spinal pain sensitization
Figure 10	Noradrenergic innervation of the synaptic transmission in the spinal dorsal horn
Figure 11	Pain classification
Figure 12	NO formation occurring after inflammatory conditions further potentiates COX-2 activity40
Figure 13	Chemical structure of Ibuprofen46
Figure 14	Chemical structure of L-NAME47
Figure 15	Chemical structure of L-Arginine47
Figure 16	Chemical structure of Yohimbine48
Figure 17	Chemical structure of Prazosin49
Figure 18	Chemical structure of DMSO49
Figure 19	Experimental Protocol
Figure 20	Elevated glass chambers with wire mesh floors53
Figure 21	von Frey filament
	1 V

Figure 22	Mean withdrawal response (%) of the left and right paws versus time (hr) at every von Frey filaments' weights (g) used
Figure 23	Line graph representing the change in the 60% mechanical threshold in the naïve and incised groups65
Figure 24	Line graph representing the change in the 60% mechanical threshold in the incised and ibuprofen treated groups 68
Figure 25	Line graph representing the change in the 60% mechanical threshold in the incised, pre ibuprofen (100mg/kg) treated and post ibuprofen (100mg/kg) treated groups71
Figure 26	Line graph representing the change in the 60% mechanical threshold in the incised and L-NAME treated groups74
Figure 27	Line graph representing the change in the 60% mechanical threshold in the incised, ibuprofen, L-Arginine and L-Arginine +ibuprofen treated groups
Figure 28	Line graph representing the change in the 60% mechanical threshold in the incised, ibuprofen, yohimbine and yohimbine +ibuprofen treated groups
Figure 29	Line graph representing the change in the 60% mechanical threshold in the incised, ibuprofen, prazosin and prazosin +ibuprofen treated groups
Figure 30	Spinal nitric oxide concentration in the naïve and incised groups
Figure 31	Spinal nitric oxide concentration in the naïve, incised, and ibuprofen treated groups
Figure 32	Spinal nitric oxide concentration in the naïve, incised, 30 minutes pre ibuprofen (100mg/kg) treated and 20 minutes post ibuprofen (100mg/kg) treated groups90
Figure 33	Spinal nitric oxide concentration in the incised and L-NAME treated group
Figure 34	Spinal nitric oxide concentration in the naïve, incised, ibuprofen and yohimbine +ibuprofen treated groups94

ABSTRACT

Abstract

Background: Postoperative pain control is still far from satisfactory. NSAIDs represent an attractive class of analgesics because of their relatively low toxicity. Accumulating evidence demonstrated the analgesic effect of NSAIDs could be explained beyond the COX inhibition theory. Nitric oxide (NO) and α adrenoreceptors may play a role in ibuprofen's postoperative analgesic effect. Ibuprofen's pre-emptive analgesic effect needs further assessment as well.

Materials & Methods: The antiallodynic effect of graded doses of ibuprofen (30,100 & 300 mg/kg) administered 30 minutes pre-incisional, or (100 mg/kg) 30 minutes post-incisional was assessed using von Frey's filaments in a plantar incisional model of pain in Swiss albino mice. The α_1 and α_2 -selective antagonists; prazosin and yohimbine respectively, as well as a NO precursor; L-Arginine and a competitive inhibitor of nitric oxide synthase; L-NAME, were also used. Spinal NO level was measured 2 hours post-incision.

Results: Plantar incision significantly decreased the withdrawal threshold to von Frey filaments (VFWT) and increased spinal NO levels. Pre-incisional ibuprofen increased the VFWT and decreased spinal NO levels in a dose dependent manner. Pre-incisional ibuprofen was more effective than post-incisional in increasing the VFWT and decreasing spinal NO levels. L-NAME resulted in an increase in the VFWT and decreased spinal NO levels. Preceding ibuprofen by either L-Arginine or yohimbine resulted in decreasing its VFWT, while prazosin had no effect. Yohimbine also abolished its lowering effect on NO.

Conclusions: Pre-incisional ibuprofen produced pre-emptive analgesia that was superior to post-incisional ibuprofen. α_2 and not α_1 adrenoceptors and inhibition of NO synthesis contribute to the analgesic activity of ibuprofen in postsurgical pain. NO may also be involved in the α_2 adrenoceptors mechanism of ibuprofen's analgesic effect.

Keywords: Ibuprofen, incisional pain, pre-emptive analgesia, nitric oxide, alpha adrenoreceptors, mechanical allodynia.

REVIEW OF LITERATURE

Review of literature

"The Relief of Pain Should be a Human Right" is a motto adopted by the International Association for the Study of Pain (IASP). Pain sensation is protective against tissue injury. However, pain may persist and turn into a continually annoying symptom (*Hamza & Dionne*, 2009). Pain has been defined by the (IASP) as "an unpleasant sensory or emotional experience associated with actual or potential tissue damage, or described in terms of such damage" (*Omoigui*, 2007).

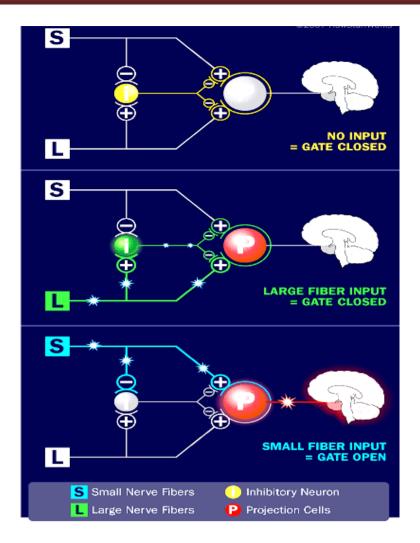
There is increasing acceptance of pain as the fifth vital sign, on a par in significance with blood pressure, pulse, temperature and respiratory rate (*Lanser & Gesell, 2001*).

Analgesics may provide complete pain relief in only one out of five patients (*Kulmatycki & Jamali, 2007*). Despite the advances in the study of pain, it continues to be a major health problem. In fact, in five European countries, from January 2010 to January 2011, approximately 49 million people reported to have pain and 11.2 million reported severe pain with a subsequent impairment of quality of life, increased healthcare resources utilization, and decreased labor force participation. For all these reasons, further understanding this complex phenomenon continues to be a growing need (*Allegri et al., 2012*).

Pain: A Historical Perspective

The origin of the theory that the transmission of pain is through a single channel from the skin to the brain can be traced to René Descartes in 1664. Descartes' reflex theory directed both the study and treatment of pain for more than 330 years. This theory proposes that a specific pain pathway carries the messages from a pain receptor in the skin to a pain center in the brain, implying

that the simple cutting of this pathway should alleviate all pain (**fig1**). The results of many clinical cases can confirm that this type of manipulation does not routinely relieve pain. In fact, damage to nerves can often result in exacerbation of painful symptoms, leading to central unremitting pain (*DeLeo*, 2006).


<u>Fig (1):</u> Line diagram shows the principle of pain transmission as described by René Descartes (1596-1650) which was first published in 1664, quoted from **DeLeo**, (2006).

At the beginning of the twentieth century, Sherrington (1910) introduced the term nociception from the Latin *nocere*, "to harm" (*Le Bars et al.*, *2001*). Ronald Melzack and Patrick Wall intensely disputed Descartes' theory with their gate control theory, proposed in 1965, which rejuvenated the field of pain study. The classic picture of a single pain mechanism was being swept away in favor of a dynamic interlocking series of biological reactive mechanisms (*Bishop*, *1980*).

Melzack and Wall suggested that in each dorsal horn of the spinal cord there is a gate-like mechanism which inhibits or facilitates the flow of afferent impulses into the spinal cord before it evokes pain perception and response (Melzack & Wall, 1965).

Laminae of the dorsal horn of the spinal cord receive pain stimuli from $A\delta$ (for cold and well-localized pain sensations) and C (for poorly localized pain or pain caused by heat or mechanical stimuli) fibers. Laminae also receive input from nonnociceptive fibers that convey tactile information. These nonnociceptive $A\beta$ fibers indirectly inhibit the effects of the pain fibers, 'closing a gate' to the transmission of their stimuli (*Melzack*, 1999).

The A β and C fibers also form synapses with an inhibitory interneuron that also synapses on the projection neuron (neurons whose axons project to more distant regions of the brain or spinal cord). The C fiber's synapse would inhibit the inhibitory interneuron, indirectly increasing the projection neuron's chance of firing. On the other hand, the A β fiber forms an excitatory connection with the inhibitory interneuron, thus decreasing the projection neuron's chance of firing. Thus, depending on the relative rates of firing of C and A β fibers, the firing of the nonnociceptive fiber may inhibit the firing of the projection neuron and the transmission of pain stimuli (*Nathan & Rudge 1974; Raja et al., 1988; fig2*). Descending pathways (to be discussed later) from the brain close the gate by inhibiting the projector neurons and diminishing pain perception (*Mazars, 1975*).

<u>Fig (2):</u> Ronald Melzack and Patrick Wall's Gate Control theory of pain.

1) When no input comes in, the inhibitory neuron prevents the projection neuron from sending signals to the brain (gate is closed). 2) When there is more large-fiber stimulation. Both the inhibitory and the projection neuron are stimulated, but the inhibitory neuron prevents the projection neuron from sending signals to the brain (gate is closed). 3) Nociception happens when there is more small-fiber stimulation. This inactivates the inhibitory neuron, and the projection neuron sends signals to the brain informing it of pain (gate is open), quoted from http://drpinna.com/pain-medicine-2-3154/gate-theory-pain.