MOLECULAR GENETIC STUDIES ON HEAT SHOCK GENES IN MAIZE (ZEA MAYS L.)

By FATMA EL-SAYED MAHMOUD MOHAMED

B.Sc. Agric. Sc. (Genetics), Zagazig University, 2004 M. Sc. Agric. Sc. (Genetics), Ain Shams University, 2011

A Thesis Submitted in Partial Fulfillment

Of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY in

Agricultural Sciences (Genetics)

Department of Genetics Faculty of Agriculture Ain Shams University

Approval sheet

MOLECULAR GENETIC STUDIES ON HEAT SHOCK GENES IN MAIZE (ZEA MAYS L.)

BY

FATMA EL-SAYED MAHMOUD MOHAMED

B. Sc. Agric. Sc. (Genetics), Zagazig University, 2004 M. Sc. Agric. Sc. (Genetics), Ain Shams University, 2011

This thesis for Ph.D. degree has been approved by:

Dr.	Ahme	ed Abdel-S	alan	n Mahmo	ud				• • •
	Prof.	Emeritus	of	Genetics	s, Facult	y of	Agricultu	re,	Zagazig
	Unive	ersity							
Dr.	Emar	ı Mahmou	d Fa	hmv					
		Emeritus		•					
	Unive			,	j		,		
Dr.	Moha	amed Abde	el-Sa	lam Rash	ed				
	Prof.	Emeritus	of (Genetics,	Faculty	of A	griculture,	Ain	Shams
	Unive	ersity							

Date of Examination: 3 / 3 / 2018

MOLECULAR GENETIC STUDIES ON HEAT SHOCK GENES IN MAIZE (ZEA MAYS L.)

By

FATMA EL-SAYED MAHMOUD MOHAMED

B. Sc. Agric. Sc. (Genetics), Zagazig University, 2004 M. Sc. Agric. Sc. (Genetics), Ain Shams University, 2011

Under the supervision of:

Dr. Mohamed Abdel-Salam Rashed

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Principal supervisor).

Dr. Kamal Mohamed khalil

Prof. Emeritus of Genetics, Department of Genetics & Cytology, National Research Center.

ABSTRACT

Fatma El-Sayed Mahmoud: Molecular Genetic Studies on Heat Shock Genes in Maize (*Zea mays* L.). Unpublished Ph.D. Thesis, Department of Genetics, Faculty of Agriculture, University of Ain Shams, 2018.

The protein fingerprints of four Egyptian maize inbred lines (Zea mays L.), were performed using grain total-soluble protein electrophoretic analysis. The results showed 18 bands in a distinct pattern of K1 and K7 inbred lines, while 17 bands were present in G342 and Rg59 inbred lines as another distinct pattern indicating different genotypes. The high temperature effect on the four maize lines exposed to 45°C for 2 and 4 hours at 14-days old seedlings besides control (25°C) was studied. Four bands of heat shock proteins with molecular weights of 82, 22, 17 and 10 kDa appeared in the inbred line K1 after exposing to 45°C for 2 and 4 hours which may be indication of thermo-tolerance. One band in inbred line K1, four bands in line k7 and seven bands in line G342 were found in control appeared more concentrated after heat treatment at 45°C for 4 hours. New proteins were induced in leaves of k1 maize inbred line after exposing to heat-treatment which a high number of spots were separated by 2D electrophoresis after the treatment of 45°C for 2h and 4h. Some of these new protein spots picked off from the gel to be identified by LC-MSMS analysis. Five heat shock protein markers in the four maize lines were assessed by immunoblot with antiserum. This revealed that the antibodies against plant HSP markers were able to recognize the endogenous proteins of maize inbred lines that were absent in the control plants. These proteins were induced in the resistant maize inbred lines k1, k7 and G342 to high temperatures in contrast of the sensitive line G342,

besides, there were differences in the induction kinetics of HSP markers. The gene expression was studied by RT-PCR using three gene markers (Zip60, hsp22 and hsp16.9). The expression of the three genes were induced strongly by heat-shock treatments in the lines k1, k7 and G342, while in Rg59 line the expression was less than the control. The hsp22 gene was cloned and sequenced which gave a size of 657 bp cDNA sequences from the K1 line after heat treatment at 45°C for 4h. The comparison between this sequence and another gene sequences in the Gene Bank showed 100% identity in nucleotide base pairs. The gene was cloned in plant expression vector which produced a sub-cellular localization protein. Transformation of the gene, after fused with GFP and mitochondrial marker, in leaves tobacco plant by agro-infiltration was carried out to quantify the expression of the gene and its localization using an Olympus confocal microscope

Key words: Maize, Heat shock protein (hsp), genes, RT-PCR, Immunoblot, 2D-electrophoresis, Transformation.

AKNOWLEDGMENT

The author wishes to express her sincere gratitude to **Prof. Dr. M. A. Rashed,** Professor of Genetics, Faculty of Agriculture, Ain Shams University for suggesting the problem, continuous supervision, providing the necessary advices and energetic guidance through out the course.

The author wishes to express her sincere appreciation to **Prof. Dr. K. M. Khalil,** Professor of Genetics, Genetics and Cytology Dept.,
Genetic Engineering and Biotechnology Division, National Research
Centre for his kind supervision and his interest of this work.

The author also wishes to express her sincere appreciation to **Prof. Dr. M. H. Abou-Deif,** Professor of Genetics, Genetics and Cytology Dept., Genetic Engineering and Biotechnology Division, National Research Centre for his assistance throughout this work, and in the preparation of the manuscript.

The author also extends her appreciation to **Prof. Dr. S. A. Khatab,** Professor of Genetics, Genetics and Cytology Dept., National Research Centre for his kindly supply of the maize grains for this study.

Thanks to all the staff members of Genetics Department, Faculty of Agriculture, Ain Shams University. Thanks also to all the staff members of Genetics and Cytology Dept., Genetic Engineering and Biotechnology Division, National Research Centre.

Lastly, thanks to the Spanish Agency for International Development Cooperation of Spain to provide supplement to perform the experimental work of the thesis in Spain through the research project "11-CAP-2-1151" between Centre for Research in Agricultural Genomics, Barcelona, Spain and National Research Centre, Giza, Egypt from January 1st 2012 until June 30th 2015.

CONTENTS

LIST OF TABLES	V
LIST OF FIGURES	vii
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	4
1. Heat shock proteins and high temperature tolerance in maize	4
2. Analysis of proteins by 2D electrophoresis and immunoblot	12
3. Levels of gene expression in maize inbred lines using real time	
PCR	22
4. Cloning and transformation of thermotolerance genes in maize	27
III. MATERIALS AND METHODS	40
1. Materials	40
1.1: Plant material	40
1.2: Strains and plasmid vectors	41
2. Methods	41
2.1. Storage protein extraction for fingerprinting	41
2.2. Heat stress condition assay by 1D-SDS PAGE	42
2.2.1. Quantification of proteins (Bio-Rad Protein	
Assay)	42
2.2.2. Stock solutions	43
2.2.3. Acrylamide stocks buffers (30%)	44
2.2.4. Used Buffers	44
2.2.5. Preparation of the polyacrylamide gel	45
2.2.6. Gel staining solution	45
2.2.7. Destaining solution	46
2.2.8. Application of samples	46
2.2.9. Electrophoretic conditions	46

2.3. 2D Electrophoresis and analysis for k1 line	47
2.3.1. Protein extraction	47
2.3.2. The two dimensional gel electrophoresis	47
2.3.2.1. The first dimensionel	47
2.3.2.2 The second dimensione	48
2.3.3. Protein identification by MS and database search	49
2.3.3.1. In-gel digestion	49
2.3.3.2. Acquisition of MS/MS spectra by LC-	
ESI-MSMS	49
2.3.4. Data analysis	50
2.4. Immunoblot analysis (Western blot analysis)	50
2.4.1. Western transfer	50
2.4.2. Western blot	51
2.5. RNA analysis	53
2.5.1. Extraction and purification of plant total RNA	53
2.5.2. cDNA synthesis	546
2.5.3. PCR primers	56
2.5.4. Polymerase Chain Reaction (PCR)	57
2.5.4.1. Sample preparation	57
2.5.4.2. PCR program	58
2.5.4.3. Agarose gel electrophoresis	58
2.5.5. Gene sequencing	59
2.6. Quantitative RT-PCR analysis	59
2.7. Isolation and plasmid construction of hsp22 gene	60
2.7.1. Purification of PCR product band from agarose gel	60
2.7.2. Ligation of cDNA extracted in PCR2.1 Topo vector	00
(3.9kb)	61
	O I

2.7.3. Transformation of <i>E.coli</i> competent cells	61
2.7.4. Purification of plasmid DNA from <i>E.coli</i>	62
2.8. Agrobacterium-mediated transformation of tobacco	63
2.8.1. Transformation of <i>Agrobacterium</i> competent cells	63
2.8.2. Transformation of tobacco by Agrobacterium	64
2.8.3. Agroinfiltration and localization of ZmHSP22	
protein	65
2.8.4. Transient expression in N. benthamiana leaves and	
laser-scanning confocal microscopy	66
IV. RESULTS AND DISCUSSION	68
1. Protein purification and electrophoresis	68
2. Effect of high temperature on protein synthesis	71
3. Two dimensional electrophoresis (2D) analysis in the line	, -
K1 leaves under heat stress	77
4. Two experimental approaches were carried out in this study	, ,
to investigate if the resistance to high temperatures of maize	88
inbred lines correlates with expression levels of HSP markers	00
4.1. A comparative analysis of induction levels of five	88
protein markers by immunoblot (western blot)	88
4.1.1. Induction of BiP antibody in response to heat- shock	00
4.1.2. Induction of HSP 70 in response to heat-shock	90
4.1.3. Induction of mitochondrial HSP22 in response to	
heat- shock	91
4.1.4. Induction of cytosolic HSP17.9 in response to heat-	
shock	92
4.1.5. Induction of cytosolic HSP17.6 in response to heat-	- -
shock	93

4.2. Expression levels of three heat-induced gene	
markers by RT PCR	96
4.2.1. ZIP 60 transcription factor involved in thermal stress	
and drought	96
4.2.2. hsp 22 gene encoding for a maize mitochondrial hsp	
22kD	96
4.2.3. hsp 16.9 gene encoding for a cytoplasmic hsp 16.9	
kD	96
5. Isolation and cloning of heat shock protein gene 22kDa	105
6. Transformation and localization of 22 heat shock protein	
gene	113
6.1. Cloning in PCAMBIA vector	113
6.2. Transformation in Agrobacterium agro-infiltration in	
tobacco leaves	114
V. SUMMARY	118
VI. REFERENCES	122
الملخص العربي VII	

LIST OF TABLES

Tables		Page
Table (1)	The four maize inbred lines used in the study and their pedigrees	40
Table (2)	Composition of 13% resolving gel and 3 % staking gel. (Mini gel)	45
Table (3)	Genomic DNA elimination reaction components are	43 55
Table (4)	Reverse-Transcription reaction components	55
Table (5)	List of specific primers and their nucleotide sequences	56
Table (6)	SDS-PAGE profile of embryos total proteins of four maize inbred lines, representing band number and molecular weight (MW), where (+) means	
Table (7)	presence and (-) means absence of band	70
	2): 45°C for 4 hours. (+) means presence and (-) means absence of band	74