The Use of Magnesium Sulphate in Peridural Anesthesia (spinal, epidural and combined)

Thesis

Submitted for partial fulfillment of M.D in anesthesiology

Вy

Rehab Abd elfattah Abd elrazik Elsayed

(Master degree in Anesthesiology)

Supervised By

Prof. Dr. Hany Mohamed El Zahaby

Professor of Anesthesia and Critical Care Faculty of Medicine - Ain Shams University

Prof. Dr. Reem Hamdy El-Kabarity

Assistant Professor of Anesthesia and Critical Care Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2013

List of Contents

Title P	age
♦ List of Abbreviations	
♦ List of Tables	II
♦ List of Figures	II
♦ Introduction	1
♦ Aim of the Work	1
♦ Review of Literature	5
■ Pharmacology of Local Anesthetics5	5
■ Bupivacaine1	18
■ Neuraxial Adjuvants2	21
■ Fentanyl2	28
■ Magnesium Sulphate	36
■ Neuroaxial Blockade6	52
♦ Patients and Methods	74
♦ Results	35
♦ Discussion	109
♦ Summary	118
♦ References	120
♦ Arabic Summary	

List of Tables

Table No	Title				
Table (1):	Clinically used opioids Agonists and Comparative potency to morphine				
Table (2):	Nerve fibers classification				
Table (3):	Demographic data:				
Table (4):	The intraoperative pulse rate (BPM) of spinal anesthesia groups				
Table (5):	Intra - operative mean arterial blood pressure MAP (mmHg) of spinal anesthesia groups	88			
Table (6):	Onset time of sensory and motor block of spinal anesthesia groups				
Table (7):	Highest level of sensory block of spinal anesthesia groups	90			
Table (8):	Density of motor block of spinal anesthesia groups	91			
Table (9):	Intra-operative Visual analogue score of spinal anesthesia groups	92			
Table (10):	Time to two segment regression of sensory block (duration of analgesia) of spinal anesthesia groups	93			
Table (11):	The number of patients receiving pethidine used as rescue analgesia in the study groups of spinal anesthesia	94			
Table (12):	Complications in the study groups of spinal anesthesia	95			
Table (13):	The intraoperative pulse rate (BPM) of epidural anesthesia groups	96			
Table (14):	Intra-operative MAP (mmHg) of epidural anesthesia groups	97			
Table (15):	Onset time of sensory and motor block of epidural anesthesia groups98				

List of Tables (Cont.)

m 11 ar	mu.s	
Table No	Title Paş	ge
Table (16):	Density of motor block of epidural anesthesia groups	9
Table (17):	Intra-operative Visual analogue score of epidural anesthesia groups 1	00
Table (18):	Time to request for analgesia (duration of analgesia) of epidural anesthesia groups	01
Table (19):	The total amount of bupivacaine given as top-up doses (ml of 0.25% of isobaric bupivacaine) for epidural anesthesia groups	102
Table (20):	The intraoperative pulse rate (BPM) of combined anesthesia groups 1	103
Table (21):	Intra-operative MAP (mmHg) of combined anesthesia groups 1	04
Table (22):	Density of motor block of combined anesthesia groups	105
Table (23):	Intra-operative Visual analogue score of combined anesthesia groups 1	106
Table (24):	Time to request for analgesia (duration of analgesia) of combined anesthesia groups	107
Table (25):	The total amount of bupivacaine given as top-up doses (ml of 0.25% of isobaric bupivacaine) for combined anesthesia groups	108

List of Figures

Figure No	Title	Page
Figure (1):	Chemical structure of local anaesthetic agents	5
Figure (2):	Molecular configuration of various local anaesthetics Error! Bookmark not defined	7
Figure (3):	Mechanisms of action of local anaesthetic agents	8
Figure (4):	Dissociation of local anaesthetic salt in solution	10
Figure (5):	Chemical structures of opioid agonists commonly administered in the perioperative period	24
Figure (6):	The vertebral column	63
Figure (7):	10 point scale visual analuge scale	78
Figure (8):	Intra-operative pulse rate BPM of spinal anesthesia groups	87
Figure (9):	Intra-operative MAP of spinal anesthesia groups	88
Figure (10):	Onset of sensory and motor block of spinal anesthesia groups	۸9
Figure (11):	Highest level of sensory block of spinal anesthesia groups	90
Figure (12):	Density of motor block of spinal anesthesia groups	91
Figure (13):	Visual analogue score of spinal anesthesia groups	92
Figure (14):	Duration of analgesia of spinal anesthesia groups	93
Figure (15):	Use of pethidine as rescue medication for spinal anesthesia groups	94

List of Figures (Cont.)

Figure No	Title	Page
Figure (16):	Complications in the study groups of spinal anesthesia	95
Figure (17):	Intra-operative pulse rate BPM of epidural anesthesia groups	96
Figure (18):	Intra-operative MAP of epidural anesthesia groups	97
Figure (19):	Onset of sensory and motor block of epidural anesthesia groups	98
Figure (20):	Density of motor block of epidural anesthesia groups	99
Figure (21):	Visual analogue score VAS of epidural anesthesia groups	١٠٠
Figure (22):	Duration of analgesia of epidural anesthesia groups	101
Figure (23):	Total amount of bupivacaine consumption for epidural anesthesia groups	102
Figure (24):	Intra-operative pulse rate BPM of combined anesthesia groups	103
Figure (25):	Intra-operative MAP of combined anesthesia groups	104
Figure (26):	Density of motor block of combined anesthesia groups	105
Figure (27):	Visual analogue score VAS of combined anesthesia groups	1.6
Figure (28):	Duration of analgesia of combined anesthesia groups	107
Figure (29):	Total amount of bupivacaine consumption for combined anesthesia groups	108

First of all thanks to "Allah"

I would like to express my greatest and cordial thanks to

Prof. Dr. Hany Mohamad Mohamad Elzahaby
Professor of Anesthesia and Intensive Care, Faculty
of Medicine, Ain Shams University, for his
encouragement, advice and unlimited support have
guided me through every step of this work.

Very special thanks should go to Dr. Reem Hamdy Elkabarity, Assistant Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for his sincere help and valuable advice through the whole work.

List of Abbreviations

Abbrev.	Meaning				
AMI	Acute myocardial infarction				
AMP	Adenosine monophosphate				
AMPA	α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate				
ASA	American society of anaesthesiologist				
ATP	Adenosine triphosphate				
\mathbf{AV}	Atrio-ventricular				
BBB	Blood brain barrier				
BPM	Beats per minute				
BTS	British Thoracic Society				
CABG	Coronary artery bypass graft				
CNS	Central nervous system				
COX	Cyclooxygenase				
CPB	Cardiopulmonary bypass surgery				
CSF	Cerebrospinal fluid				
GABA	Gama aminobutyric acid				
GMP	Guanosin monophosphate				
i.v.	Intravenous				
ICU	Intensive care units				
IL	Interleukins				
LOX	Lipooxygenase				
MAP	Mean arterial blood pressure				
MBS	Modified Bromage Score				
MgSO ₄	Magnesium sulfate				
MLC	Myosin light chain				
Mu-OR	Mu-opioid receptors				
NGF	Nerve growth factor				
NMDA	N-methyl-d-aspartate				
nNOS	Nitric oxide synthase				
NS DADA	Nociceptive specific neurons				
PABA	Para-amino butyric acid				
PCEA	Patient controlled epidural analgesia				
PKA PKC	Protein kinase A				
PKC	Protein kinase C				
PLC	Phospholipase C				
PNS SICN	Peripheral nervous system Scottish Intercollegists Guidelines Network				
SIGN SN	Scottish Intercollegiate Guidelines Network				
SN SD	Sinus nodal Substance P				
SP	Substance P				

Introduction

Regional anesthesia techniques are widely used for lower extremity orthopedic surgery and offer several benefits compared to general anesthesia. One of the most important issues is the ability to provide extended post operative pain control that is superior to that provided by systemic opioids alone (*Doty & Sukhani*, 2006). Regional anesthesia is a safe, effective and cheap anesthesia over general anesthesia (*Bali et al.*, 2007).

Spinal and epidural techniques have been the standard regionl techniques for major lower extremity orthopedic surgery over the last two decades. However combined spinal epidural anesthesia has evolved as an ideal technique for these procedures (*Wong*, 2006). It combines the rapid onset and intensity of spinal blockade with the use of minimal dose of local anesthetics for a shorter duration, and the flexibility of epidural intra- operative reinforcement if necessary and postoperative epidural analgesia (*Bali et al.*, 2007).

The majority for lower extremity orthopedic surgery are the elderly and many have multiple coexisting medical conditions. Ensuring haemodynamic stability in these patients requires selection of the appropriate technique with a focus on maintaining a safe and desirable level of blockade, and limiting extensive sympathectomy (*Wong*, 2006).

Polypharmacological approach is the most common practice as regarding regional anesthesia, as no single agent has yet been identified to spescifically inhibit nociception without associated side effects (*Edmund et al.*, 2002).

Opioids such as fentanyl is commonly added to local anesthetics to produce spinal and epidural anesthesia. However, significant side effects such as pruritis, respiratory depression, haemodynamic instability and occasionally sever nausea and vomiting may limit their use (*El Kerdawy*, 2008).

Non-competitive N-methyl D-aspartate NMDA receptor antagonists can have an effect on pain when used alone, but it has also been shown that they can reveal the analgesic properties of opioids (*Begon et al.*, 2002).

Magnesium is the fourth most abundant cation in the body and the second most abundant intracellular cation. It has numerous physiological activities including antinociceptive effects in animal and human pain models (*Lee et al.*, 2007). These effects are primarily based on the regulation of calcium influx into the cell, natural physiologic calcium antagonism (*Iseri & French*, 1984) and antagonism of NMDA receptors (*Ascher & Nowak*, 1987).

Whatever the route of administration intravenous, intrathecal or epidural, the true site of action of magnesium is propably at the spinal cord NMDA receptors. However

intravenous magnesium for modulation of antinociception via NMDA receptor antagonism has insufficient blood-brain barrier penetration to achieve effective CSF concentrations (*Ko et al.*, 2001).

Intrathecal and epidural magnesium can provide a low-cost, simple change in clinical anesthesiology practice leading to significant decrease in patient's peri-operative analgesic needs and their safety has been evaluated in animal (*Begon et al.*, 2002) and human (*Bilir et al.*, 2007) studies that concluded that magnesium seems to have a good safety profile with no serious side effects.

Some clinical studies proved the effective analgesic property of magnesium as an adjuvant to intrathecal opioids prolonging the duration and thus improving the quality of spinal anesthesia (*Ozaleli et al.*, 2005).

Other clinical study proved that using epidural magnesium reduces post-operative analgesic requirements (*Bilir et al.*, 2007).

Aim of the Work

The aim of this study is to evaluate in a systematic approach the exact effects of magnesium sulphate when added to the commonly used protocols for spinal, epidural and combined spinal - epidural blocks used in Ain Shams University hospitals for lower extremity orthopedic surgery.

Pharmacology of Local Anaesthetics

Chemistry:

Local anaesthetic agents have a similar molecular configuration consisting of a lipophilic aromatic ring connected to a hydrophilic amine group (Fig. 1). The linking chain may be used to classify the agents as an ester, amide, ketone or ether (Sudoh et al., 2003).

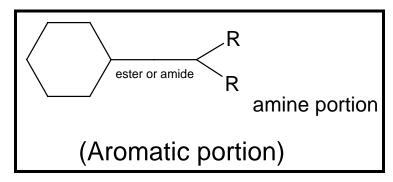


Figure (1): Chemical structure of local anaesthetic agents (Whiteside and Wildsmith, 2000).

Ester local anaesthetics include cocaine, procaine, 2-chloroprocaine, tetracaine and benzocaine (*McLure and Rubin, 2005*). Apart from cocaine, which is a naturally occurring compound, ester drugs result from the combination of para-aminobenzoic acid and amino-alcohol. The esters tend to be unstable in solution and clinically they only diffuse poorly through tissues. They are hydrolyzed by plasma cholinesterase and their duration is increased in patients with absent, low or atypical plasma cholinesterase. They are metabolized to para-aminobenzoic acid (PABA) which may cause allergic reactions