

The Potential Role of Ivabradine Versus Metoprolol in Experimental Models of Atherosclerosis, Myocardial Infarction and Dysrhythmia in Rats

Thesis

Submitted for Partial Fulfillment of M.D in Pharmacology & Therapeutics

By

Nevien Fekry Abdallah Hendawy

MB.B.Ch., M.Sc.

Assistant Lecturer in Department of Pharmacololgy and Therapeutics

Supervised by

Prof. Dr.

Hoda Abdel Gelil Sallam

Professor of Pharmacology and Therapeutics Faculty of Medicine, Ain Shams University

Dr.

Hala Salah Abdel Kawy

Assistant Professor of Pharmacology and Therapeutics Faculty of Medicine, Ain Shams University

Prof. Dr.

Ahmed El Sayed Badawy Professor of Pharmacology and

Therapeutics
Faculty of Medicine, Ain Shams
University

Dr.

Ghada Farouk Mohamed

Assistant Professor of Histology Faculty of Medicine, Ain Shams University

Dr.

Amany Helmy Mohamed

Lecturer of Pharmacology and Therapeutics Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University

> > 2012

Acknowledgement

First of all, I would like to thank Allah.

I would like to express my deepest gratitude and great respect to Prof. Dr. Hoda Aldel Gelil Sallam, Professor of Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, I had the honor and pleasure to proceed with work under her supervision. Her constant guidance and encouragement made all the difference.

I'd like to express my deepest thanks to Prof. Dr. Ahmed El Sayed Badawy, Professor of Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, for his continuous guidance, encouragement, creativity and offering me his precious time for clinical experience.

My deepest appreciation goes to Dr. Hala Salah Aldel Kawy, Assistant Professor of Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, for her valuable suggestions, advice, effort and for allowing me a free access to her precious time during the accomplishment of this work.

Special thanks goes to Dr. Glada farouk Molamed, Assistant Professor of Histology, Faculty of Medicine, Ain Shams University, for her help and co-operation without which this work could not be possible.

And last but not least, I would like to thank Dr. Amany Helmy Mohamed, Lecturer of Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University for her patience, support and valuable supervision which made this work possible.

Nevien Hendawy

Contents

	Page
List of Tables	i
List of Figures	ii
List of Abbreviations	vi
Introduction	1
Aim of the Work	5
Review of Literature	8
Materials and Methods	51
Results	70
Discussion	116
Summary and Conclusion	145
References	154
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Effect of treatment with ivabradine versus metoprolol on systolic blood pressure in L-NAME treated rats	73
Table (2):	Effect of treatment with ivabradine versus metoprolol on heart rate in L-NAME/ isoprenaline treated rats	76
Table (3):	Effect of treatment with ivabradine versus metoprolol on ventricular weight/ body weight ratio in L-NAME/isoprenaline treated rats	81
Table (4):	Effect of treatment with ivabradine versus metoprolol on histopathology of cardiomyocyte diameter and size of infarct area in L-NAME/ isoprenaline treated rats	92
Table (5):	Effect of treatment with ivabradine versus metoprolol on thoracic aorta intima/media ratio in L-NAME/isoprenaline treated rats	98
Table (6):	Effect of treatment with ivabradine versus metoprolol on vascular reactivity of the isolated aortic ring preparation in L-NAME/isoprenaline treated rats	103
Table (7):	Effect of treatment with ivabradine versus metoprolol on serum CK-MB & LDH in L-NAME/isoprenaline treated rats	109
Table (8):	Effect of pretreatment with ivabradine versus metoprolol on dysrhythmogenic dose of digoxin	114

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Schematic presentation of an atherosclerotic cross section	
Fig. (2):	Stages of atherosclerosis	14
Fig. (3):	Scheme representing sequence of coronary athero thrombosis	
Fig. (4):	Heart rate: a key determinant of ischemia	18
Fig. (5):	Role of increased heart rate and local hemodynamic forces on the endothelium	
Fig. (6):	Overview of the potential pathogenetic mechanisms, by which high heart rate promotes atherosclerosis	3
Fig. (7):	The central role of heart rate in the pathophysiology of coronary artery disease	
Fig. (8):	Representation of the 4 subunits forming the f channel	
Fig. (9):	Autonomic regulation of f channel	32
Fig. (10):	Metoprolol preparations available at market	45
Fig. (11):	Scheme of the study design of the experiment 1	55
Fig. (12):	Scheme of the animal groups.	57
Fig. (13):	The amplifier, tail cuff, pulse transducer and animal restraint cage.	
Fig. (14):	Typical recording using Lab Chart showing pressure signals.	
Fig. (15):	Effect of treatment with ivabradine versus metoprolol on systolic blood pressure in L-NAME treated rats	E
Fig. (16):	Effect of treatment with ivabradine versus metoprolol on heart rate in L-NAME/isoprenaline treated rats	9

List of Figures (cont...)

Fig. No.	Title	Page No.
Fig. (17):	Effect of treatment with ivabradine and metoprolol on changes in electrocardiographic (ECG) patterns in isoprenaline induced myocardial infarction in L-NAME treated rats.	l
Fig. (18):	Effect of treatment with ivabradine versus metoprolol on: (A) body weight, (B) ventricle weight/body weight in L-NAME/isoprenaline treated rats	; ;
Fig. (19):	Photomicrographs of sections in rat's left ventricle isolated from control group.	
Fig. (20):	Photomicrographs of sections in rat's left ventricle isolated from L-NAME/ isoprenaline treated group	
Fig. (21):	Photomicrographs of sections in rat's left ventricle isolated from ivabradine treated group.	
Fig. (22):	Photomicrographs of sections in rat's left ventricle isolated from metoprolol treated group	
Fig. (23):	Photomicrographs of sections in rat's small intra- cardiac coronary arteries isolated from all rat groups	,
Fig. (24):	Effect of treatment with ivabradine versus metoprolol on cardiomyocyte diameter in L-NAME/ isoprenaline treated rats	L
Fig. (25):	Effect of treatment with ivabradine versus metoprolol on size of infarct area in L-NAME/isoprenaline treated rats	1
Fig. (26):	Photomicrographs of sections in rat's thoracic aorta isolated from control group and L-NAME/isoprenaline group	1
Fig. (27):	Photomicrographs of sections in rat's thoracic aorta isolated from ivabradine treated group and metoprolol treated group.	l

List of Figures (cont...)

Fig. No.	Title	Page No.
Fig. (28):	Effect of treatment with ivabradine versus metoprolol on aortic intima/media ratio ir L-NAME/isoprenaline treated rats	1
Fig. (29):	Effect of treatment with ivabradine versus metoprolol on phenylephrine induced contraction and acetylcholine induced relaxation ir endothelium intact rat's aortic rings in L-NAME isoprenaline treated rats	n n /
Fig. (30):	Cumulative response curves for phenylephrine or rat's aortic rings isolated	
Fig. (31):	Endothelial-dependent relaxation induced by acetylcholine in isolated perfused rat's aortic rings precontracted by phenylephrine	3
Fig. (32):	Effect of treatment with ivabradine versus metoprolol on serum cardiac markers in L-NAME isoprenaline treated rats	/
Fig. (33):	ECG tracing in rats treated with gradual increasing dysrhythmogenic doses of digoxin	
Fig. (34):	Effect of pretreatment with ivabradine versus metoprolol on dysrhythmogenic dose of digoxir inducing: (A) premature ventricular contraction (B) ventricular tachycardia	1 ,

List of Abbreviations

s-AR β -adrenergic receptor

AC Adenylyl cyclase

ACE Angiotensin converting enzyme

AchAcetylcholineApoEApolipoprotein E

AT1 Angiotensin receptor 1

AV Atrioventricular bpm Beats per minute

CAD Coronary artery disease

cAMP Cyclic adenosine monophosphate

CCBs Calcium channel blochers

cGMP Cyclic guanosine monophosphate

CK Creatine kinase

CK-MB Creatine kinase MB isoenzymeCNBD Cyclic nucleotide-binding domain

COX-2 Cyclooxygenase 2

CVD Cardiovascular disease

CYP Cytochrome P

DNA Deoxyribonucleic acidEC₅₀ Effective concentration 50

ECG Electrocardiographic

ELISA Enzyme-linked immunosorbent assay

E_{max} Maximum contractile responseeNOS Endothelial Nitric Oxide Synthase

ET1 Endothelin 1

Gr_i G-protein subunit inhibitory Gr_s G-protein subunit stimulatory

Gs G-protein subunit

GFR Glomerular filtration rate
H&E Hematoxylin-Eosin stain

v

HCN Hyperpolarization activated cyclic nucleotide-gated

HR Heart rate

HRR Heart rate reduction

I/M Intima/media

LDH Lactic dehydrogenase
LDL Low density lipoprotein

L-NAME *N*-nitro-L-arginine methyl ester

LV Left ventricular

LV dP/dt Derivative of left ventricular pressure over time

M2 Type-2 muscarinic receptor

MCP-1 Monocyte chemotactic protein-1

MI Myocardial infarction

mRNA Messenger ribonucleic acid

NAD Nicotinamide adenine dinucleotide

NADH 1, 4 dihydronicotinamide adenine dinucleotide NADPH Nicotinamide adenine dinucleotide phosphate

NIH National Institute of Health

NO Nitric oxide

PI3 Phosphatidylinositol 3

PVC Premature ventricular contraction

SAN Sinoatrial node

SBP Systolic blood pressureSEM Standard error of mean

SS Shear stress

TMB Tetramethyl benzidine substrate

TS Tensile stress

TSP-4 Thrombospondin-4 gene

UV Ultraviolet

VF Ventricular fibrillation

 $egin{array}{ll} VFT & Ventricular fibrillation threshold \ V_{max} & Maximum rate of depolarization \end{array}$

VT Ventricular tachycardia

vi

Abstract

Aim: This study was designed to investigate the effects of ivabradine versus metoprolol on cardiovascular changes and the infarction size induced by isoprenaline in chronic N-nitro-L-arginine methyl ester (L-NAME) treated rats and digoxin induced ventricular dysrhythmia. Methods: Experiment one, four groups of male Wistar rats were studied: control group, L-NAME treated group (100mg/kg), L-NAME (100mg/kg) and ivabradine (10mg/kg) treated group and L-NAME (100mg/kg) and metoprolol (150mg/kg) treated group. All treatments were administered daily by gavage. After 6 weeks of L-NAME treatment myocardial infarction was induced by isoprenaline injection (11mg/100g/day i.p. for 2 consecutive days). Experiment two, three groups of rats were studied: digoxin, ivabradine and metoprolol groups. Systolic blood pressure and electrocardiograph were monitored. Cardiac marker enzymes were measured and histopathological examination of heart tissues, aorta and coronary vessels were performed. Vascular reactivity of the isolated aortic ring was done. Results: Ivabradine and metoprolol administration to L-NAME/ isoprenaline treated rats significantly reduced heart rate, microvascular remodeling. the infarct size, serum dehydrogenase and creatine kinase and attenuated the mortality resulting from isoprenaline induced infarction. Treatment with ivabradine had non-significant effect against L-NAME induced hypertension and cardiac hypertrophy, while metoprolol had a significant effect. Ivabradine improves endothelial function, and reduces atherosclerotic plaque formation in L-NAME treated rats. On the contrary, metoprolol reduced atherosclerosis in L-NAME treated rats with no effect on endothelial function. Ivabradine could not protect against digoxin induced ventricular dysrhythmia while metoprolol showed protective effect. Conclusion: These results suggest that ivabradine has a significant protective effect against isoprenaline-induced myocardial infarction, endothelial dysfunction and atherosclerosis in chronic L-NAME-treated rat.

Key words: Ivabradine; metoprolol; NG-nitro-L-arginine methyl ester (L-NAME); atherosclerosis.

الهدف: صمم هذه البحث لدراسة آثار الأيفابرادين مقارنة ميتوبرولول التغيرات القلب والأوعية الدموية وحجم احتشاء الناجم عن حقن مادة الأيزوبرينالين النموذج حيواني يتم فية منع مزمن لصناعة أوكسيد النيتريك عن طريق معالجة الفئران بمادة (L-NAME) والإ ضربات القلب المحدثة بمادة الديجوكسين طرق البحث قسمت - ا أربع مجموعات: مجموعة ابطة ومجموعة مُعالجة مادة L -NAME مجم/ كجم ومجموعة مُعالجة بمادة L-NAME مجم/ كجم و الأيفابر ادين مجم/ كجم ومجموعة مُعالجة بمادة L-NAME مجم/ كجم والميتوبرولول مجم/ كجم. و قد تم إعطاء هذة الأدوية يوميا عن طريق أنبوب معدى لمدة أسابيع. بعد ستة أسابيع من العلاج بمادة L-NAME تم إحداث إحتشاء عضلة القلب عن طريق الحقن البيرتوني لمادة الأيزوبرينالين بجرعة مجم لكل جرام من وزن الجسم لمدة يومين التوالي و بعد ذلك تم قياس ضغط الدم ا ورسم القلب و قياس انزيمات القلب في الدم ودراسة التغيرات المرضية في أنسجة القلب و الشرايين التاجية والشريان الاورطـــي. إ دراسة تغيرات وظائف الخلايا المبطنة لحلقات الشريان الأبهر المعزولة وفسى الثانية تم دراسة ثلاث مجموعات من الفئران: مجموعة مُعالجة الديجوكسين وأخرى بـ فِابرادين و أخرى بيتوبرولول النتائج: إعطاء الأيفابرادين و الميتوبرولول الفئران المعالجة بمادة -L NAME/isoprenaline قد أحدث انخفاض ملحوظا في معدل ضربات القلب والتغيرات المرضية الأوعية الدموية الدقيقة حجم احتـشاء القلـب ومـستوى الكربـاتنين كينـاز- (م ب) واللاكتيـك ديهايدروجيناز الدم ومعدل الوفيات الناجم عن الأيزوبرينالين. إعطاء الأيفابرادين لم يكن له تغيير ذي دلا احصائية ضغط الدم الأنقباضي أو قطر القلب على عكس الميتوبرولول الذي أحدث تغييراً ذا دلالة احصائية. وأحدث الأيفابر ادين تحسنا في وظيفة الأوعية الدموية وتصلب الشرابين في الفئران المعالجة بمادة L-NAME. على العكس من ذلك الميتوبرولول من تــصلب الشرابين بدون أي تأثير على وظيفة بطانة الأوعية الدموية. لم يستطع الأيفابر ادين الوقاية ضد إختلال ضربات القلب البطيني الناجم عن الديجوكسين تحت ظروف التجربة المستخدم حين أظهر الميتوبرولول تأثير وقائي. النتيجة: تشير هذه النتائج إلى أن الأيفابر ادين له تأثير رقائي ضد احتشاء عضلة القلب الناجم عن مادة الأيزوبرينالين وظيفة الأوعية الدموية وتصلب الشرايين الفئران الخاضعة للعلاج المزمن بمادة L-NAME.

The Potential Role of Ivabradine Versus Metoprolol in Experimental Models of Atherosclerosis, Myocardial Infarction and Dysrrhythmia in Rats

Thesis

Submitted for Partial Fulfillment of M.D in pharmacology & Therapeutics

By

Nevien Fekry Abdallah Hendawy MB.Bch., M.Sc.

Assistant lecturer in department of Pharmacololgy and Therapeutics

Supervised by

Prof. Dr. Hoda Abdel Gelil Sallam

Professor of Pharmacology and Therapeutics
Faculty of Medicine, Ain Shams University

Prof. Dr. Ahmed El Sayed Badawy

Professor of Pharmacology and Therapeutics Faculty of Medicine, Ain Shams University

Dr. Ghada Farouk Mohamed

Assistant Professor of Histology
Faculty of Medicine, Ain Shams University

Dr. Hala Salah Abdel Kawy

Lecturer of Pharmacology and Therapeutics Faculty of Medicine, Ain Shams University

Dr. Amany Helmy Mohamed

Lecturer of Pharmacology and Therapeutics Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University

الدور المحتمل للايفابرادين بالمقارنة مع الميتوبرولول في نماذج تجربية لتصلب الشرايين، الذبحة الصدرية واختلال الضربات القلبية في الفئران

توطئة للحصول على درجة الدكتوراة في الأدوية والعلاج

الطبيبة/ نيفين فكرى عبد الله هنداوي

بقسم الأدوية والعلاج

ماجستير الأدوية

أ.د. هدى عبد الجليل سلام أستاذ بقسم الأدوية والعلاج كلية الطب ـ جامعة عين شمس

أ.د. أحمد السيد بدوى أستاذ بقسم الأدوية والعلاج كلية الطب ـ جامعة عين شمس

د. غادة فاروق محمد الهيستولوجى كلية الطب ـ جامعة عين شمس

د. هالة صلاح عبد القوى مدرس بقسم الأدوية والعلاج كلية الطب ـ جامعة عين شمس

د. أماتى حلمى محمد مدرس بقسم الأدوية والعلاج كلية الطب ـ جامعة عين شمس كلية الطب جامعة عين شمس ٢٠٠٩