Value of Preprocedural Multidetector Computed Tomography Angiography In Prediction of Successful Percutaneous Intervention upon Patients with Chronic Totally Occluded Coronary arteries

Thesis for partial fulfillment of MD degree of cardiology

Submitted by

Diaa El Din Ahmed Kamal

M.B.B.Ch, M.Sc.Ain Shams University

Under supervision of

Prof. Ramzy Hamed El Mawardy

Professor of Cardiology Ain Shams University

Prof. Khaled Abdel Azeem Shokry

Professor of Cardiology Military Medical Academy

Prof. Zeinab Abdel Salam Fahmy

Assistant Professor of Cardiology Ain Shams University

Dr. Wael Mahmoud El Kilany

Lecturer of Cardiology Ain Shams University

Dr. Mohamed Abdel Kader Abdel Rahim

Lecturer of Cardiology Ain Shams University

Ain Shams University **2012**

First and foremost, I thank God for helping and guiding me in accomplishing this work.

I would like to express my sincere gratitude to *Prof. Ramzy Hamed El Mawardy*, Professor of Cardiology, Ain Shams University, for his great support and stimulating views as a talented teacher & an excellent supervisor.

I would also like to express my sincere gratitude for *Prof. Khaled Abdel Azeem Shokry*, Professor of cardiology, Military Medical Academy & head of cardiology department, Kobri Elkobba military hospital, for his great support & help throughout this work.

I must extend my warmest and deepest gratitude to *Prof. Zeinab Abdel Salam Fahmy*, Assistant professor of Cardiology, Ain Shams University, for her great help. Her continuous encouragement was of great value and support to me.

Also, I cannot forget to send my gratefulness & deep thanks to *Dr. Wael Mahmoud El Kilany*, Lecturer of Cardiology, Ain Shams University, for his great help in order to reach the success of this work. Really, I owe him too much.

A special tribute to *Dr. Mohamed Abdel kader Abdel Rahim*, Lecturer of Cardiology, Ain Shams University, for his supervision and advice. His active, persistent guidance and overwhelming kindness that meant a lot for me have been of great help throughout this work. I learnt a lot from him & I owe him too much.

Also, I cannot forget to express my sincere gratefulness & deep thanks for all staff members of the cardiology department in Kobri Elkobba military hospital especially my colleague *Dr. Ahmed Magdy*. Without their help, I wouldn't have been able to accomplish this work.

Last but definitely not least, I would like to thank my family for always being there for me and for all the suffering and hardships I made them face from the day I entered this world. To them I owe my life.

LIST OF CONTENTS

Subject	Page
Introduction	1
Aim of the Work Review of Literature	3 4
Chapter 1: Multislice CT	4
Introduction	4
 Historical overview 	5
Technology	12
• Basics	12
 Data acquisition 	30
Image reconstruction	32
Reconstruction increment	33
Reconstruction kernel	33
 Image display 	34
 Image post – processing 	35
 Cardiac applications of MSCT 	44
 Coronary artery disease 	44
 Coronary bypass surgery 	51
 Aortic diseases 	52
 Pulmonary embolism 	54
 Percutaneous coronary intervention 	55
 Valvular heart diseases 	57
 Electrophysiology 	58
 Congenital heart diseases 	58

Subject	Page	
 Radiation dose reduction 	59	
Chapter 2: Coronary CTO	52	
Introduction	61	
 Angiographic and clinical definitions 	62	
 Histology and pathophysiology 	63	
Epidemiology	66	
 When and why to revascularize a CTO 	67	
 CTO and the "Occluded artery trial" 	69	
 Clinical presentation 	70	
 Revascularization strategies 	71	
 Collateral circulation 	73	
 Predictors of successful intervention 	77	
 Basic principles for CTO PCI 	79	
 Basic materials for CTO PCI 	83	
 Antegrade approach 	88	
 Retrograde approach 	91	
 Complications of CTO PCI 	95	
Patients & Methods	97	
Results	107	
Discussion	119	
Conclusions	131	
Recommendations Limitations	132 133	
Summary	133	
References	139	
Master Table	-	
Arabic Summary		

LIST OF FIGURES

Fig.	Title	Page
(1)	One of the earliest scanners, constructed by G. Hounsfield seen at the Mayo Clinic, with the brain image acquired from it	6
(2)	The electron-beam CT acquisition system	8
(3)	Basic components of MSCT machine	12
(4)	Prospective ECG gating	14
(5)	Pixel and voxel	21
(6)	Image noise	22
(7)	Dual source MSCT	24
(8)	Data acquisition by MSCT	31
(9)	Curved multiplanar reconstruction of the right coronary artery	39
(10)	MIP image of the right coronary artery	40
(11)	VRT image	42
(12)	MSCT showing dissection of the ascending aorta with extension into the aortic root	54
(13)	CT pulmonary angiogram showing a massive filling defect suggestive of pulmonary embolism	55

Fig.	Title	Page
(14)	Retrospective ECG-gating with tube current modulation	60
(15)	Neoangiogenesis in CTO	65
(16)	Parallel wire technique	89
(17)	Side branch technique	89
(18)	Anchor balloon technique	91
(19)	CART technique	93
(20)	Reverse CART technique	94
(21)	Effect of age on end procedure and antegrade approach outcomes	109
(22)	Relation between previous MI and antegrade approach outcome	110
(23)	Effect of ostial location of CTO on end procedure and antegrade approach outcomes	114
(24)	Effect of artery size distal to CTO on end procedure and antegrade approach outcomes	114
(25)	Relation between distal cap calcification and antegrade approach outcome	116
(26)	Comparison between the ability of CA and MSCT to visualize side branch at CTO site, proximal stump and filling of artery distal to CTO in patient no.12 (CTO mid RCA)	118

LIST OF TABLES

Table No.	Title	Page
(1)	Developments in temporal and spatial resolution of MSCT	19
(2)	Effective Radiation Dose Values for Common Diagnostic Imaging Procedures in mSV	30
(3)	Demographic and clinical variables of the study population	109
(4)	MSCT variables in relation to end procedure outcomes	111
(5)	MSCT variables in relation to antegrade approach outcomes	113
(6)	MSCT variables in relation to retrograde approach outcomes	115

LIST OF ABBREVIATIONS

ACS : Acute coronary syndrome

ACT : Activated clotting time

BMI : Body mass index

BMS: Bare metal stent

CA : Coronary angiography

CABG : Coronary artery bypass grafting

CACS : Coronary artery calcium score

CAD : Coronary artery disease

CART : Combined antegrade and retrograde subintimal

tracking

CC : Collateral connection

CCTA : Coronary CT angiography

CHD : Congenital heart disease

cMPR : Curved multiplanar reconstruction

CTA : Computed tomography angiography

CTDI : CT dose index

CTO : Chronic total occlusion

DES : Drug eluting stent

DLP : Dose length product

DM : Diabetes mellitus

EBCT : Electron beam computed tomography

ECG : Electrocardiogram

FOV : Field of view

HbA₁**C** : Glycated hemoglobin

HR : Heart rate

HTN: Hypertension

HU : Hounsfield unit

III : International unit

IV : Intravenous

IVUS : Intravascular ultrasound

JNC : Joint National Committee on Prevention, Detection,

Evaluation, and Treatment of High Blood Pressure

Kv : Kilovolt

LAD : Left anterior descending coronary

LM : Left main coronary

LV : Left ventricle

LVEF : Left ventricular ejection fraction

MACE : Major adverse cardiac events

MAs : milliamperes

MDCT : Multidetector CT

Mg : Milligram

MIP : Maximum intensity projection

Mm : Millimeter

MPR : Multiplanar reconstruction

MRCD : Maximum recommended contrast dose

MRI : Magnetic resonance imaging

Ms : millisecond

MSCT : Multislice CT

MSv : Millisievert

OTW : Over the wire

PCI : Percutaneous coronary intervention

PE : Pulmonary embolism

PET : Positron emission tomography

PTCA : Percutaneous transluminal coronary angioplasty

RCA : Right coronary artery

S : Second

SPECT : Single photon emission computed tomography

STAR : Segmental wall motion abnormalities.

TAVI : Transcatheter aortic valve implantation

TIMI : Thrombolysis in myocardial infarction

VRT : Volume rendering technique

3D : Three dimensional

4D : Four dimensional

Introduction

Chronic total occlusion (CTO) lesions still represents the last frontier for coronary interventionist and is a frequent reason for referring patients for coronary artery bypass graft surgery (CABG).¹

CTO intervention is a complex procedure with a variable success rate of 55–80% in most experienced centers with high success rates only in a few luminary sites.² Complications of this procedure include dissection, perforation, and impairment of ipsilateral collaterals to the distal bed. The major adverse coronary event (MACE) rate with a successful PCI of CTO is about 2-2.5%.² failed PCI is associated with MACE rate of about 5.6%.¹

Although the most important factor of procedural failure is due to the inability to cross the total occlusion with the guide wire and to reach the distal true lumen end, other factors may prevent balloon crossing and final recanalization.

Remarkable progress has been achieved in the field of CTO interventions over the past few years pioneered by Japanese interventional cardiologists. New guide wires, techniques and specific devices have led to higher procedural success rates. Even in this subset of lesions, drug eluting stents significantly reduced

the incidence of restenosis and reocclusion providing also to these complex procedures improved long term patency.

The introduction of 64-slice multidetector computed tomographic coronary angiography (CTA) started a new era in percutaneous coronary intervention (PCI) by combining the best characteristics of catheter angiography (CA) while avoiding most of its disadvantages.

CTA is a useful tool to optimize PCI strategy as it is possible to characterize the length, course, and composition of an occluded artery and allow visualization of the distal runoff and side branches.³

Due to the complexity of CTO interventions and potentially higher incidence of complications, correct patient selection based on presence of factors predicting success of the procedure must be done.

Different studies in the last few years were done trying to identify preinterventional and interventional parameters that can predict success or failure of the complex procedure of CTO revascularization. These parameters were derived mainly from different imaging modalities as CA, multislice CT (MSCT) and cardiac magnetic resonance imaging (MRI).

However, despite all these trials, uptill now there is no consensus about the definite predictors of success or failure of this

type of interventions and research will have to go on to get solid informations about these predictors.

Nowadays, MSCT with the very fast going on improvement in its technology is gaining much more attention of researchers as a minimally invasive highly informative method to extract, assess and confirm predictors of success or failure of CTO interventions.

Aim of the work

This study aimed at identification of MDCT coronary angiography findings that can predict the outcome of PCI upon chronic totally occluded coronary arteries.

Introduction

Coronary artery disease (CAD) is the most common cause of sudden death and is also the most common reason for death of men and women over 20 years of age.⁴

Various invasive and non-invasive imaging techniques are used for cardiac diagnosis, with the goal of visualizing the anatomical structures of the heart and obtaining information about cardiac function by means of monitoring cardiac motion and the blood supply of the heart muscles. The most important techniques used are coronary angiography, intravascular ultrasound, echocardiography, myocardial perfusion scanning & magnetic resonance imaging.

Coronary angiography (CA) is currently the standard technique to detect and evaluate coronary artery stenosis and is the basis for decision-making regarding further work-up. Recent technological advances in CA using the bi-plane technique and flat-panel detectors have contributed to further enhancing image quality and performance. For example, the newest catheter angiography systems provide 3D modeling of the coronary arteries based on simultaneous acquisition of two projections of the same artery.

However, the invasiveness, with its subsequent complications , the considerable amount of X-ray radiation (3–6