

Assessment of CD4 and CD8 in Chronic Hepatitis (C) with and without Cirrhosis

THESIS

Submitted for the partial fulfillment of the M.D degree in Internal Medicine

BY

Marwa Mahmoud Shawki Ahmed

(M.B B.ch., M.SC.)
Faculty of Medicine Ain Shams University

Supervised by

Professor Doctor / Hoda El-Tayeb Nasser

Professor of internal medicine Faculty of Medicine - Ain Shams University

Professor Doctor / Ahmed Shawki El-Sawaby

Professor of internal medicine Faculty of Medicine - Ain Shams University

Professor Doctor / Mohamed Abdul Mabood Mohamed

Professor of internal medicine Faculty of Medicine - Ain Shams University

Professor Doctor / Hossam Abdul Aziz Mahmoud

Professor of internal medicine Faculty of Medicine - Ain Shams University

Doctor / Noha Abdul Razik El-Nakib

Assistant Professor of internal medicine Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2012

Acknowledgment

Thanks to Allah the source of all knowledge, by whose abundant aid this work has come to fruition.

It has been a great honor to proceed this work under the supervision of **Professor/Hoda El-Tieb Nasser**, Professor of General Medicine, Faculty of Medicine, Ain Shams University. I am greatly indebted to her for suggesting, planning the subject and supervising the whole work. I will never forget her unlimited help, continuous support, kind encouragement and wise guidance.

I would like also to express my sincere gratitude and appreciation to **Professor/ Ahmed Shawki El-Sawaby,** Professor of General Medicine, Faculty of Medicine, Ain Shams University, for her helpful guidance, valuable advice and generous help in this work. To him I shall be forever grateful.

I would like to express my deep obligation to **Professor/ Mohamed Abdul Mabood**, Professor of General Medicine, Faculty of Medicine, Ain Shams University, for his useful assistance and enlightening supervision.

I would also like to express my sincere appreciation to **Professor/ Hossam**Abdul Aziz Mahmoud, Professor of General Medicine, Faculty of Medicine, Ain

Shams University for his persistant help and great advices in this work

Last but never least, I would like to express my gratitude and real obligation to **Doctor/Noha Abdul Razik El-Nakib**, Assistant professor of General Medicine, Faculty of Medicine, Ain Shams university, To her, words of praise are not sufficient and I am really greatly indebted to her.

Marwa Mahmoud Shawki

Contents

Contents	Page
List of Tables	
List of Figures	
List of Abbreviations	
Introduction	1
Aim of the Work	3
Review of Literature	4
Patients & Methods	63
Results	67
Discussion	76
Summary	80
Conclusion	81
Recommendations	82
References	83
Arabic Summary	-

LIST OF TABLES

Table (1)	Comparison between the three studied groups as regards the gender67
Table (2)	Comparison between the three studied groups as regards the mean age
Table (3)	Comparison between the three studied groups as regards the liver functions
Table (4)	Comparison between the three studied groups as regards the PCR
Table (5)	Comparison between the three studied groups as regards the PT
Table (6)	Comparison between the three studied groups as regards the CD4
Table (7)	Comparison between the three studied groups as regards the CD8
Table (8)	Correlation between CD4 and Liver Functions tests in group (1)
Table (9)	Correlation between CD4 and Liver Functions tests in group (2)
Table (10)	Correlation between CD4 and Liver Functions tests in group (3)
Table (11)	Correlation between CD4 and CD8 in the three studied groups
Table (12)	Correlations between CD8 and liver function tests & PCR in group 1
Table (13)	Correlation between CD8 and Liver function tests and PCR in group (2)
Table (14)	Correlation between CD8 and Liver function tests and PCR in group (3)

List of Figures

Figure (1) Estimated HCV prevalence by region6
Figure (2) Age-specific prevalence of antibody to Hepatitis C virus by selected countries
Figure (3) Geographic distribution of Hepatitis C viral species
Figure (4) Genome organization of hepatitis C virus13
Figure (5) The HCV polyprotein14
Figure (6) Structures and membrane association of Hepatitis C virus (HCV) proteins
Figure (7) Model for hepatitis C virus entry24
Figure (8) Life cycle of Hepatitis C virus25
Figure (9) Polymerase Chain Reaction (PCR)55
Figure (10) Current algorithm for the use of HCV virological tools in the
treatment of chronic hepatitis C according to HCV genotype59
Figure (11) Gender distribution among the three groups67
Figure (12) PCR level in the three study groups69
Figure (13) CD4 count in the three study groups71
Figure (14) CD8 count in the three study groups72
Figure (15) Correlation between CD4 and CD8 counts in the three study
groups

LIST OF ABBREVIATIONS

Ab	Antibody
Ag	Antigen
ALT	Alanine aminotronsferase
AST	Aspartate amino transferase
CD	Cluster of differentiation
CMI	Cell mediated immunity
CTL	Cytotoxic T Lymphocyte.
CMV	Cytomegalo virus
DC	Dendritic cell
EDTA	Ethylene diamine tetracetic acid
ELISA	Enzyme linked immunosorbent assay
ELISPOT	Enzyme Linked Immunosorbent Spot assay
assay	
ER	Endoplasmic Reticulum
FBS	Fetal Bovine Serum
FS	Forward Scatter
GBD	Global Burden of Disease
GAG	Glycosamine Glycans
HBV	Hepatitis B virus
HCC	Hepatocellular carcinoma
HCV	Hepatitis C virus
HENCORE	Hepatits C European Network for C-operative
	Research
HIV	Human immune deficiency virus
HLA	Human leukocytic antigen
HS	Highly significant

HVR	Hypervariable region
ICS	Intra Cellular Cytokine Staining
IFN	Interferon
IFN- ß	Interferon beta
IFN- α	Interferon alpha
IFN- γ	Interferon gamma
Ig	Immunoglobulin
IL	InterLeukin
IRES	Internal ribosome entry site
IVDUs	intraverous drug users
LDL	Low density Lipoproteins
LDLR	Low Denisty Lipoprotein Receptor
LT	Liver Transplantation
mDC	Myeloid dendritic cell
MHC	Major histocomptibility complex
MICA	MHC class 1 related chain A/B

MNL	Mono Nuclear Layer
NCR	Non Coding Region
NF.B	Nuclear Factor B
NK cell	Natural killer cell
NS	Non significant
NS	Non structural
P	Significance level
PBMC	Peripheral blood mononudear cells
PCR	Polymerase chain reaction
pDC	Plasmacytoid dendritic cell
PHS	Pooled Human Serum
PKR	Inducible protein kinase
PΤ	Prothrombin Time

PKR	Inducible protein kinase
	•
PT	Prothrombin Time
RIBA	Recombinant Immuno Plot Assay
RNA	Ribonucleic acid
S	Significant
SD	Standard devidation
SGOT	Serum Glutamic Oxaloacetic Transferase
SGPT	Serum Glutamic Pyruvate Transferase
SPSS	Statistical package for special sciences
SR-B1	Scavenger Receptor class B type 1
STD	Sexual Transmitted Disease
SVR	Sustained Virological Response
TCR	T Cell receptor
TGF-ß	Transforming growth factor-beta
Th1	T helper 1 cell
Th2	T helper 2 cell
TLR	Toll- like receptor
TM	Transmembrane
TNF	Tumour necrosis factor
Tregs	Regulatory T- cells
UTR	Untranslated Region
VLDL	Very Low Denisty Lipoproteins
WHO	World health organization

Introduction

T- lymphocytes, with their diffuse effector functions and their regulatory effect on other immune cells, play a central role in inflammatory diseases such as infectious diseases, autoimmune diseases, graft versus host diseases and allograft rejection, of particular interest. T cells are believed to be involved in the pathogenesis of important liver diseases including both autoimmune liver diseases and viral hepatitis. (*Lai et al.*, 2003)

Chronic viral hepatitis caused by hepatitis B virus (HBV) and hepatitis C virus (HCV) is the most common chronic liver disease. In addition to playing a crucial role in the control of HBV and HCV, T cells responses are also responsible for the liver injury during acute and chronic phases of viral hepatitis. (*Ward et al.*, 2002)

Knowledge on hepatitis virus immunology has provided important insight to the understanding of T cell role in immunity of autoimmune liver diseases (*Leshner F*, 2000)

Hepatitis C virus is the major cause of chronic liver disease. HCV is a positive stranded RNA virus belonging to the family of Flavivirus. Replication of the virus takes place primarily in the liver, making HCV infection the leading cause of chronic hepatitis in the worldwide (*Thimme et al.*, 2002)

HCV persists in the majority of infected individuals (~ 70%) but the incidence of asymptomatic infection or transient disease followed by spontaneous recovery may be under estimated (*Ulsenheimer et al.*, 2003)

There is growing research to determine the long term outcomes of the disease but there is limited information on what underlies the difference in immune responses (*Chang et al.*, 2001)

Liver damage is not directly caused by the virus, rather is interplay between the virus and the immune system which results in the replacement of healthy liver tissue with fibrous scar tissue. Individuals with chronic hepatitis C infection frequently exhibit no symptoms. Some may report non-specific symptoms such as fatigue, muscle aches, nausea and anorexia. Antibodies directed against several HCV proteins can be detected in chronic patients. A variety of autoimmune or immune complex-mediated diseases have also been associated with chronic HCV infection (*Tedeschi*, 2009).

Aim of the work

Aim of the study is to find a correlation between the laboratory results, abdominal ultrasound and level of CD4 and CD8 in order to try to determine the role of T cells in the long term outcome of the disease.

Historical Background of Hepatitis C virus

The World Health Organization (WHO) estimates 170 million individuals worldwide are infected with hepatitis C virus (HCV). However, the prevalence of HCV infection varies throughout the world. For example, 1 decade ago, Frank et al reported that Egypt had the highest number of reported infections, largely attributed to the use of contaminated parenteral antischistosomal therapy (*Frank C et al.*, 2000)

This led to a mean prevalence of HCV antibodies in Egypt of 22%.

According to the US Centers for Disease Control and Prevention (CDC), an estimated 1.8% of the US population is positive for HCV antibodies. Because 3 of 4 seropositive persons are also viremic, this corresponds to an estimated 2.7 million people with active HCV infection nationwide. Infection due to HCV accounts for 20% of all cases of acute hepatitis, an estimated 30,000 new acute infections, and 8000-10,000 deaths each year in the United States.

Medical care costs associated with the treatment of HCV infection in the United States are estimated to be more than \$600 million a year. Most patients infected with HCV have chronic liver disease, which can progress to cirrhosis and hepatocellular carcinoma (HCC). Chronic infection with HCV is one of the most important causes of chronic liver disease (see the following image) and, according to a report by Davis et al, the most common indication for orthotopic liver transplantation (LT) in the United States (Davis GL et al., 1989)

Egypt has a very high prevalence of HCV and a high morbidity and mortality from chronic liver disease, cirrhosis, and hepatocellular carcinoma. Approximately 20% of Egyptian blood donors are anti-HCV positive. Egypt has higher rates of HCV than neighboring countries as well as other countries in the world with comparable socioeconomic conditions and hygienic standards for invasive medical, dental, or paramedical procedures. The strong homogeneity of HCV subtypes found in Egypt (mostly 4a) suggests an epidemic spread of HCV. Since a history of injection treatment has been implicated as a risk factor for HCV, a prime candidate to explain the high prevalence of HCV in Egypt is the past practice of parenteral therapy for schistosomiasis. The large reservoir of chronic HCV infection established in the course of these campaigns remains likely to be responsible for the high prevalence of HCV morbidity and may be largely responsible for the continued endemic transmission of HCV in Egypt today (*Lavanchy D & McMahon B*, 2000)

Epidemiology of Hepatitis C virus

The estimated global prevalence of HCV infection is 2.2%, corresponding to about 130 000 000 HCV-positive persons worldwide (fig.1). Because many countries lack data, this estimate is based on weighted averages for regions rather than individual countries. Region-specific estimates range from < 1.0% in Northern Europe to > 2.9% in Northern Africa. The lowest prevalence (0.01%-0.1%) has been reported from countries in the United Kingdom and Scandinavia; the highest prevalence (15%-20%) has been reported from Egypt. An estimated 27% of cirrhosis and 25% of HCC worldwide occur in HCV-infected people (*Perz et al.*, 2006)

Figure (1) Estimated HCV prevalence by region (*Global burden of disease (GBD*)

for hepatitis C)

There are both geographic and temporal differences in the patterns of HCV infection. For example, vastly different countries, including the United States, Australia, Turkey, Spain, Italy, and Japan, belong to regions of the world with similar overall average prevalences of HCV infection (1.0%-