Immunoglobulin GM and KM Allotypes Influence on the Outcome of Hepatitis C Virus Treatment

Thesis

Submitted for partial fulfillment of M.D. degree in Internal Medicine

Вy

Sarah Abd El Kader Ali El Nakeep M.B.B.Ch, M.Sc.

Supervisors

Prof. Dr. Mohsen Mostafa Maher

Professor of Internal Medicine Faculty of Medicine- Ain Shams University

Prof. Dr. Sayed Mohamed Shalaby

Professor of Internal Medicine Faculty of Medicine- Ain Shams University

Prof. Dr. Mohamed Abd El Adl Al-Sawey

Professor of Pediatrics and Head of Genetics department Faculty of Medicine- Ain Shams University

Prof. Dr. Manal Zaghloul Maharan

Professor of Clinical Pathology Faculty of Medicine- Ain Shams University

Prof. Dr. Wesam Ahmed Ibrahim

Assistant Professor of Internal Medicine Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2012

تأثير الجلوبيولين المناعي ذو الأنماط الأليلية جاما و كابا على نتيجة المعالجة لفيروس

الإلتهاب الكبدى سى رسسالة

توطئة للحصول على درجة الدكتوراة في أمراض الباطنة العامة

مقدمة من

طبيبة/ سارة عبد القادر علي النقيب ماجستير أمراض الباطنة تحت إشراف

أد/ محسن مصطفى ماهر

أستاذ أمراض الباطنة العامة كلية الطب- جامعة عين شمس

أد/ سيد محمد شلبي

أستاذ أمراض الباطنة العامة كلية الطب- جامعة عين شمس

أ.د/ محمد عبد العدل الصاوي

-أستاذ طب الأطفال ورئيس وحدة الوراثة كلية الطب- جامعة عين شمس

أد/ منال زغلول مهران

أستاذ الباثولوجيا الإكلنيكية كلية الطب- جامعة عين شمس

أم د/ وسام أحمد إبراهيم أستاذ مساعد أمراض الباطنة العامة

كلية الطب- جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠١٢

Thanks to ALLAH, Most Gracious, Most Merciful, Who gives everything we have and gave me the power and patience to finish this work.

My deepest gratitude to **Prof. Dr. Mohsen Mostafa Maher**, Professor of Internal Medicine, Faculty of Medicine Ain
Shams University, my mentor and teacher, who has been like a
father to me with his great support and guidance.

I will always be thankful to **Prof. Dr. Mohamed Abd El Adl Al-Sawey**, Professor of Pediatrics and Head of Genetics department, Faculty of Medicine Ain Shams University, for his enthusiasm and support towards this work.

Many thanks to **Prof. Dr. Sayed Mohamed Shalaby,** Professor of Internal Medicine, Faculty of Medicine Ain Shams University, for his help and patience and to **Prof. Dr. Manal Zaghloul Maharan,** Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her scientific guidance.

All my thanks cannot be enough to **Prof. Dr. Amr Fateen,** Professor of Internal Medicine, Faculty of Medicine, Ain Shams University, and **Prof. Dr. Gamal Esmat,** Professor of Tropical Medicine, Faculty of Medicine, Kasr El Aini University, for their belief and faith in this work and for their invaluable help which made this work see the light.

I should also thank **Dr. Wesam Ahmed Ibrahim**, Lecturer of Internal Medicine, Faculty of Medicine Ain Shams University, and **Dr. Nesreen Mohamed Ali**, Lecturer of Clinical Pathology, Faculty of Medicine Ain Shams University, for their cooperation in this work.

I will always be indebted to my family who gave me the strength to endure the hardships and obstacles I encountered in this work.

List of Contents

Subject	Page
List of Abbreviations	I
List of Tables	VIII
List of Figures	XI
Introduction	1
Aim of the Study	3
Review of Literature	
(1) Epidemiology	4
(2) Genetic structure of HCV	10
(3) Genotypes of HCV	22
(4) Methods of transmission	35
(5) Clinical picture and diagnosis	44
(6) Treatment	55
(7) Mechanism of action of interferon and ribavirin	69
(8) Novel drugs for HCV	80
(9) Predictors of interferon response	94
(10) Innate and adaptive immune response	106
(11) GM and KM allotypes and their geographic	117
distribution	
(12) Effect of allotypic markers on disease outcome	125
(13) Allotypic markers in HCV outcome	133
Materials and Methods	136
Results	
Discussion	
Summary	
References	200
Arabic summary	

+ ss HCV RNA	Positive sense single-stranded HCV RNA.
A	Adenosine.
AA	African Americans.
AccI restriction enzyme	Restriction enzyme from Acinetobacter calcoaceticus.
ADAR1	Adenosine deaminase.
ADCC	Antibody-dependent cell-mediated cytotoxicity.
AHC	Acute hepatitis C.
Alb-IFN	Albeinterferon.
ALT	Alanine AminoTransferase.
ANA	Antinuclear antibody.
anti-AChR	Anti acetyl choline receptors.
anti-MUC1	Anti mucin 1
APC	Antigen presenting cells.
APRI	AST-platelet ratio index.
AST	Aspartate AminoTransferase
BMI	Body mass index.
bp	Base pairs.
BSA	Bovine serum albumin.
C. jejuni	Campylobacter jejuni.
C	Core.
CA	Caucasian Americans.
СВС	Complete blood count.

	1
CD	Cluster of differentiation.
cDNA	Cloned deoxy ribonucleic acid.
СНС	Chronic hepatitis C.
CHF	Congestive heart failure.
CI	Confidence interval.
COPD	Chronic obstructive airway disease.
DCs	Denderitic cells.
DEP	Clinical level of depression.
DM	Diabetes mellitus.
DQA1*0103	HLA-DQ alpha gene.
DR1	Down-regulator of transcription 1.
ds-RNA	Double stranded ribonucleic acid.
E	Envelope.
EBV	Epstein barr virus.
EDHS	Egypt demographic and health survey.
ER	Endoplasmic reticulum.
ESRD	End-stage renal disease.
ETR	End of treatment response.
EVR	Early virological response.
F	Fibrosis.
Fcγ	Fragment crystallizable region (Fc region) gamma.
FDA	Food and drug administration.
FM	Fibrometer.
FT	Fibrotest.
G	Guanosine.

GBS	Guillan Barre Syndrome.
GDP	Guanosine Diphosphate.
gp70	Glycoprotein 70.
GTP	Guanosine Triphosphate.
GWAS	Genomewide association studies.
НарМар	Haplotype map of the human genome.
HBsAg	Hepatitis B surface antigen.
HBV	Hepatitis B virus.
нсс	Hepato-cellular carcinoma.
HCV	Hepatitis C virus.
HCVab	Hepatitis C antibody.
HCW	Health care workers.
HD	haemodialysis.
HGB	Haemoglobin.
HIV	Human immunodeficiency virus.
HLA	Human leukocyte antigen.
HRQOL	Health-related quality of life.
HS	Hepascore.
HSP 92	Nla III restriction enzyme.
HTN	Hypertension.
Huh7 cells	Human hepatoma cell line.
HVR	Hypervariable regions.
ID users	Injection drug users.
IDU	Injection drug use.
IFN	Interferon.

IFN-α	Interferon alpha.
IFN-γ	Interferon gamma.
IFN-λ	Interferon lambda.
IFN-ω	Interferon omega.
IgG	Immunoglobulin gamma.
IGHG	Immunoglobulin heavy constant gamma gene.
IHD	Ischemic heart disease.
IL-28B	Interleukin 28 B.
IMDC	Immature dentritic cells.
IP-10	Induced protein 10.
IR	Insulin resistance.
IRES	Internal ribosome entry site.
IRF9	IFN-regulatory factor 9.
IRFs	IFN regulatory factors.
ISDR	Interferon sensitivity determining region.
ISDR	Interferon sensitivity-determining region.
ISGs	Interferon stimulated genes.
ISREs	IFN-stimulated response elements.
IVCT	In vivo cryotechnique.
KC	Kupfer cells.
KIRs	Killer cell immunoglobulin-like receptors.
LB buffer	Lysis buffer.
LPS	Lipopolysaccharides.
LSEC	Liver sinusoidal endothelial cells.

	1
ML tree	Maximum likelihood (ML) method with Tamura-Nei substitution model.
MC	Mixed cryoglobulinemia.
МНС	Major histo-compatibility complex.
MIP-1	Macrophage inflammatory protein.
MSM	Men who have sex with men.
MxA	Interferon induced protein related to murine protein Mx1.
NA	Not amplified
NAFLD	Non-alcoholic fatty liver disease
NK cells	Natural killer cells
NNI	Non-nucleoside inhibitors
NO	Nitric oxide
NOS2	Nitric oxide synthetase 2.
NR	Non responder.
NS proteins	Nonstructural protein.
NS	Non significant (statistically).
NT	Not typed by this method.
NTRs	Non-translated regions.
NTZ	Nitazoxanide.
O. volvulus	Onchocerca volvulus.
OAS	Oligoadenylate synthetase.
OPN	Osteopontin.
ORF	Open reading frame
PEG-IFN	Pegylated interferon
PK solution	Proteinase K.

PKR	protein kinase RNA activated
PLT	Platelet
RBV	Ribavirin
RdRp	RNA dependent RNA polymerase
RFLP	Restriction fragment length polymorphism
RNA	Ribonucleic acid
RT-PCR	Reverse transcription polymerase chain reaction
RVR	Rapid virological response.
S	Significant (statistically).
SC	Stellate or Ito cells
SD	Standard deviation
SE	Shared epitope
SLE	Systemic lupus erythematosus
SNPs	Single nucleotide polymorphisms
SOC	Standard of care
STAT-C	Signal Transducer and Activator of Transcription C
SVR	Sustained virological response
T.Bil	Total bilirubin
Th1	T helper cells type 1
TIZ	Tizoxanide
TLRs	Toll-like receptors
TNF-α	Tumor necrosis factor alpha
TSH	Thyroid stimulating hormone
UTR	Untranslated region

V region	Variable region
VR	Virological response
WB	Washing buffer
WBC	White blood cells
WHO	World health organization
αFP	Alpha feto protein
γ chain	Gamma chain
κ chain	Kappa chain

List of Tables

Table	Title	Page
Table (1)	Reported HCV infection prevalence in the	7
	six most populous nations in the world	
Table (2)	Worldwide distribution of hepatitis C virus	26
Tuble (2)	genotypes and subtypes	20
Table (3)	Distribution of hepatitis C virus genotypes	29
Table (3)	and subtypes in the Middle East	
	Results of restriction fragment length	
Table (4)	polymorphism (RFLP) genotyping of	31
	hepatitis C virus isolates.	
Table (5)	Determinants of spontaneous clearance in	46
Table (5)	acute hepatitis C virus infection	40
T 11 (6)	Classification of extrahepatic	51
Table (6)	manifestations of HCV infection	
Table (7)	Factors arguing for and against immediate	56
Table (1)	treatment of acute hepatitis C virus infection	
Table (8)	Definitions of responses to antiviral therapy	57
Table (9)	Viral kinetics in response to treatment	58
Table (10)	Treatment options for nonresponders and	63
Table (10)	relapsers to initial therapy for hepatitis C	
Table (11)	Factors Associated with Response to	95
Table (11)	Interferon-Based Therapy for Hepatitis C	
Table (12)	The Molecular and Cellular Events Involved	110
	in Inducing Immune Response in the Liver	
Table (12)	Possible mechanism of T cell failure	116
Table (13)	contributing to HCV persistence	110

🕏 List of Tables 🗷

Table	Title	Page
Table (14)	GM haplotype frequencies estimated in populations from different parts of old continents	118
Table (15a)	Nomenclature and abbreviations used for the IGHG genes, alleles, and IgG subclass allotypes	122
Table (15b)	Allotypes nomenclature, immunoglobulin	124
Table (16)	Comparison between the two groups as regards the different variables	156
Table (17)	Enumeration of the complications of treatment in the studied group	160
Table (18)	Comparison between the two groups as regard the allotypic carriers and homozygousity	161
Table (19)	Validity of Hardy Weinberg equilibrium	164
Table (20)	Comparison between the two groups as regard the different alleles	164
Table (21)	Comparison between the two groups (divided according to the end of treatment response) as regard KM zygousity	165
Table (22)	Comparison between the KM1,3 hetero and homozygousity as regards the HCV after 12 weeks	165
Table (23)	Comparison between the two groups as regard the HCV-RNA baseline viral load before treatment	166
Table (24a)	Logistic regression test to for prediction of KM 1,3 zygousity on the response	167

🕏 List of Tables 🗷

Table	Title	Page
Table (24b)	The outcome assessment of Logistic regression test to for prediction of KM 1,3 zygousity on the response	167
Table (25)	Spearman rank correlation between different variables	168
Table (26)	Spearman rank correlation between GM3,17 genotypes and different variables	169
Table (27)	Spearman rank correlation between GM23 genotypes and different variables	170
Table (28)	Spearman rank correlation between KM genotypes and different variables	171

List of Figures

Figure	Title	Page
Figure (1)	Estimated prevalence of HCV infection by WHO region	4
Figure (2)	Hepatitis C virus particle structure	10
Figure (3)	Hepatitis C virus (HCV): model structure and genome organisation	12
Figure (4)	A schematic of the HCV genome with the secondary structures of CRE	14
Figure (5)	The structure of the HCV genome	15
Figure (6)	Role of processing of Core protein and HCV life cycle	16
Figure (7)	HCV life cycle	19
Figure (8)	Overall structure of HCV NS5B polymerase	20
Figure (9)	ML tree inferred by means of the Tree- Puzzle program including full length sequences of all the genotypes (1 through 11)	24
Figure (10)	Genetic diversity clades	25
Figure (11)	Map of Egypt, indicating regions from which specimens were obtained	32
Figure (12)	Mean volume of fluid retained with plunger depressed in one-piece and two piece syringes	37