FORMATION AND CHARACTERIZATION OF NANO OXIDE FILM OF Al (Mg-Cu) ALLOY

BY

Eng. Heba Mageed Emam El-Fares

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Metallurgical Engineering

Faculty of Engineering, Cairo University
GIZA, EGYPT

FORMATION AND CHARACTERIZATION OF NANO OXIDE FILM OF Al (Mg-Cu) ALLOY

BY

Eng. Heba Mageed Emam El-Fares

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Metallurgical Engineering

Under the Supervision of:

Prof. Dr. Saad Megahed El-Raghy Main Advisor Mining, Petroleum and Metallurgical Engineering Department, Faculty of Engineering, Cairo University

Prof. Dr. Randa Mohamed Abdel-Karim Advisor Mining, Petroleum and Metallurgical Engineering Department, Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

FORMATION AND CHARACTERIZATION OF NANO OXIDE FILM OF Al (Mg-Cu) ALLOY

BY

Eng. Heba Mageed Emam El-Fares

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Metallurgical Engineering

Approved by the

Examining Committee:

Prof. Dr. Saad Megahed El-Raghy Main Supervisor

Mining, Petroleum and Metallurgical Engineering Department,

Faculty of Engineering, Cairo University

Prof. Dr. Randa Mohamed Abdel-Karim Supervisor

Mining, Petroleum and Metallurgical Engineering Department,

Faculty of Engineering, Cairo University

Prof. Dr. Fawzy Abdel- kader El-Refaie Examiner

Mining, Petroleum and Metallurgical Engineering Department,

Faculty of Engineering, Cairo University

Prof. Dr. Madiha Ahmed Shoaeeb Examiner

Professor at Central Metallurgical Research

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015 Engineer: Heba Mageed Emam El-Fares

Date of Birth: 14/5/1989 Nationality: Egyptian

E-mail: hebamageed@yahoo.com

Phone: +201010916978

Address: 24 first quarter, EL -sheikh zayed Cairo, Egypt

Registration Date: 1/10/2011

Awarding Date: //

Degree: MASTER OF SCIENCE

Department: Mining, Petroleum and Metallurgy Engineering

Supervisors: Prof. Dr. Saad Megahed El-Raghy

Prof. Dr. Randa Mohamed Abdel-karim

Examiners:

Prof. Dr. Saad Megahed El-Raghy

Prof. Dr. Randa Mohamed Abdel-karim

Prof. Dr. Fawzy Abdel -Kader Elrefaie

Prof. Dr. Madiha Ahmed Shoaeeb (Central Metallurgical Research)

Title of Thesis:

FORMATION AND CHARACTERIZATION OF NANO OXIDE FILM OF (Al-Mg-Cu) ALLOY

Key Words: Nanostructures, Electrodeposition, AL(Mg-Cu) alloy, Corrosion, Anodizing

Summary

The effect of voltage and concentration of electrolyte on the structure of porous anodic alumina (PAA), via electrochemical anodizing of aluminum alloy was studied. The weight change, roughness and corrosion rate were measured. Nano porous anodic alumina templates are fabricated following the one-step anodizing at room temperature, (5, 10,20 and 40) volt and (5%, 15% and 30%) concentration (H₃PO₄). Formation of barrier oxide layer in 5% concentration at (5 and 10) volt and the porous oxide layer was formed at another conditions. When the anodizing voltage increases roughness and the the corrosion rate increases.

Acknowledgments

I have worked with a great number of people whose contribution in assorted ways to The research and the making of the thesis deserved special mention. It is a pleasure to Thank those who made this thesis possible.

Foremost I offer my sincerest gratitude to Prof. Dr. Saad El-Raghy, Metallurgical Engineering Dept, Faculty of Engineering, Cairo University for his guidance, patience And support. I consider myself very fortunate for being able to work with a very Considerate and encouraging professor like him. And also, I would like to thank him For his detailed and constructive comments, and for his important support throughout This work. In addition, he was always accessible and willing to help his students with Their researches.

I owe my deepest gratitude to my advisor Prof. Dr. Randa Abdel-Karim, Metallurgical Engineering Dept, Faculty of Engineering, Cairo University who has supported me throughout my thesis with her patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me in all the time of research and writing of this thesis. I attribute the level of my Master degree to her encouragements and

efforts and without her this thesis would not have been completed or written.

I would like to thank Prof. Dr. Hafez Ahmed, Metallurgical Engineering Dept., Faculty of Engineering, and Cairo University for the continuous support and encouragement.

I would especially like to thank engineers, technicians, and committee staff in Metallurgical Engineering Department at Cairo University.

I would like thank to Dr. Ashraf Kamal, who helped me during the sample Preparation and electrodeposition of samples and Eng.Aliaa abd Elfatah, who helped me during samples of corrosion.

A special thanks to my family. Words cannot express how Iam grateful to my mother ,my father and my husband Eng. Hussein for all of the sacrifices that they have made on my behalf. Their prayer for me was what sustained me thus far.

I would also like to thank all of my friends who supported me, and incented me to strive towards my goal.

At the end I offer my regards and blessings to all of those who supported me in any respect concerning this work.

Table of Contents

Subject	Page
Acknowledgement	i
Table of contents	ii-iii
List of Tables	iv
List of Figures	v-vi-vii-viii-ix
Abstract	X
Chapter One: Introduction	1
1.1 Anodic Aluminum template (AAO)	2
1.2 Application of Anodic Aluminum Membrane	3
(AAO)	
Chapter Two: Literature Survey	6
2.1 Introductions	7
2.2 Reactions occur during in anodizing process	7
2.3 Classification of aluminum anodizing	8
2.3.2.2 Types of electrolytes using in anodizing process	14
2.3.2.3Comparison between barrier and porous oxide film	15
2.4 Applications of Nano Porous AAO	20
2.5 Effects of anodizing conditions on anodic alumina structure	25
Chapter Three : Experimental Techniques	27
3.1 Anodizing	28
3.1.1 Test specimens	28
3.1.2 Preparation of test specimen	28
3.1.3. Anodizing process	29
3.1.3.1 Electrolytic cell and Anodizing process	29
3.1.3.2 Electrolytic Bath	30
3.1.4 pore widening process	30
3.2 Surface Characterization	31
3.2.1 Microstructure Characterization	31
3.2.2 Weight Change Measurements	31
3.2.3 Surface Roughness Measurements	32
3.2.4 Corrosion test	33

Chapter Four : Results	36
4.1 The Anodizing Behavior	37
4.2 Weight Change	41
4.3 SEM Analysis	43
4.3.1 Pore Diameter Measurements	49
4.4 Roughness Test	54
4.5. Corrosion Test	56
Chapter Five: Discussion	61
5.1 Effect of anodizing parameters on surface morphology	62
5.2 Corrosion Resistance of Anodized Alumina	66
Chapter Six: Conclusions	69
Chapter Seven: References	72

List of Tables

Table No.	Subject	Page No.
2.1	Comparison between type II "conventional anodize" and Type III "hard anodize".	10
2.2	Classification of the two types of anodic oxide film that are formed on aluminum.	15
3.1	the chemical composition of test specimen	28
3.2	Anodizing condition and bath composition	30
4.1	Weight change of Al(Mg-Cu) alloy after anodizing process as a function of anodizing voltage and acid concentration	42
4.2	values of roughness after the anodizing process	54
4.3	Corrosion properties of Anodic Aluminum Oxide (AAO) ON Al(Mg-Cu) alloy in 1%NaCl	59

List of Figures

Figure No.	Subject	Page No.
1.1	Sequential sputtering and electrodeposition of nanodots and nanorings using a porous AAO template	4
1.2	Fabrications of Alumina Nanotubes and Nanowires by Porous Alumina Membranes	5
2.1	Schematic of the major features involved in the formation of the barrier layer	11
2.2	Formation of a barrier-type anodic oxide film. In region 1 a constant current density is applied and the cell voltage is allowed to rise to the required value. When this required voltage is achieved it is maintained as a constant; consequently, the current density decreases, region 2.	12
2.3	Schematic illustration of the kinetics of porous oxide growth in galvanostatic (A) and potentiostatic (B) regimes, together with stages of anodic porous oxide development (C)	13
2.4	Schematic diagram for barrier type alumina and porous type alumina. The aluminum metal, an inner oxide consisting of pure alumina and an outer oxide consisting of an anion-contaminated alumina are indicated	14
2.5	Schematic diagram of porous oxide film structure formed electrochemically above barrier film on aluminum	16

2.6	Parameters affected on the pore diameter of nanostructures obtained by anodizing of aluminum	17
2.7	Top view of SEM images of AAO with opened pores, and bottom view of closed pores of barrier layer; (a) pore diameter with 15 nm made using H ₂ SO ₄ , (b) pore diameter with 60 nm made using C ₂ H ₂ O ₄ , and (c) pore diameter with 500 nm made using H3PO ₄	17
2.8	(A) Schematic of the ideal densely packed hexagonal array of pores; (B) Actual cross sectional view of a typical synthesized AAO membrane	18
2.9	Scanning Electron Microscopy (SEM) image of self -ordered pore array's in an aluminum oxide layer of typical synthesized AAO.	19
2.10	Fabrication of MNWs via free-standing AAO membranes: a) dissolution of non-oxidized Al, b) removal of alumina barrier layer, c) metallization, d) DC electroplating	21
2.11	Schematic diagram of fabricated AAO chip and antigen detection method.	22
2.12	Schematic diagram of real-time monitoring biosensor system. Operation principle of biosensors	22
2.13	Schematic illustration of synthetic procedure of the AAO-polyrhodanine membrane	23

2.14	illustrate Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal	24
2.15	Schematic illustration of (a) the vacuum filtration method using AAO filter membrane and (b) PDMS mold transfer of SWCNT network	25
3.1	Schematic illustration of anodizing cell	29
3.2	Anodizing cell with stirring conditions	30
3.3	Scanning Electron Microscope unit	31
3.4	Analytical Balance	32
3.5	Surface Roughness Device	33
3.6	Schematic setup corrosion cell	34
3.7	The setup of the corrosion cell apparatus	35
4.1	Figure 4.1 Relation between current [mA] and anodizing time [min]; (a) 5% concentration H ₃ PO ₄ ,(b) 15% concentration H ₃ PO ₄ , and(c) 30% H ₃ PO ₄ concentration.	40
4.2	Relation between the anodizing time (in minutes) And the current (in mille ampere) At 15% concentration (H ₃ PO ₄)	40

4.3	Relation between weight change (%) and anodizing voltage (V)	42
4.4	SEM of Anodic Aluminum Oxide (AAO) formed on Al (Mg-Cu) alloy at 5% concentration (H ₃ Po ₄) and 40min; (a) 5volt, and (b) 10volt.	44
4.4	SEM of Anodic Aluminum Oxide (AAO) formed on Al (Mg-Cu) alloy at 5% concentration (H ₃ Po ₄) ,and40min;(c) 20volt, and (d) 40volt.	45
4.5	SEM of Anodic Aluminum Oxide (AAO) formed on Al (Mg-Cu) alloy at 15%concentration (H ₃ Po ₄) ,and 40min; (a) 5volt,and (b) 10volt.	46
4.5	SEM of Anodic Aluminum Oxide (AAO) formed on Al (Mg-Cu) alloy at 15% concentration (H3PO4), and 40 min;(c) 20volt,and (d) 40volt.	47
4.6	SEM of Anodic Aluminum Oxide (AAO) formed on Al(Mg-Cu) alloy at 30% concentration(H3PO4), and 40min;(a) 5volt, (b) 10volt, (c)20volt and (d) 40 volt	48
4.7	Shows pore diameter measurements in 5%concentration (H3PO4) at; (a) 20v,and(b) 40	50
4.8	Shows pore diameter measurements in 15% concentration (H3Po4) at (a) 5V, and (b) 10V	51
4.8	Shows pore diameter measurements in 15% concentration (H3Po4) at(c) 20V, and (d) 40 V	52
4.9	Relation between average pore diameter (µm) and anodizing voltage (V) at 5% concentration (H3Po4)	53

4.10	Relation between average pore diameter (µm) and anodizing voltage (V) at 15% concentration (H ₃ Po ₄)	53
4.11	Relation between roughness, Ra (μ m) and anodizing voltage (V) at different concentrations (H_3Po_4)	55
4.12	polarization curves at;(a)5%concentration(H_3Po_4), ,(b)15%concentration(H_3Po_4), and (c) 30% concentration (H_3Po_4).	58
4.13	Relation between corrosion rate[μ m/Y],and anodizing voltage [V]at ; (a)5%concentration H3PO4,(b)15%concentration H3Po4,and(C) 30%concentration H ₃ Po ₄ .	60
4.14	The histogram of average size of pore diameter (Dp)and interpore distance (Dint) in anodized Al low and Al high respectively.	65

Abstract

The effect of Al (Mg-Cu) alloy on anodizing process under various operating conditions (voltage and phosphoric acid concentration) at constant time and temperature was studied.

The objective of the present work is to study anodizing and characterization of nano porous aluminum oxide films on aluminum alloy substrate.

Nano porous anodic alumina templates are fabricated following the one-step anodizing at room temperature, (5, 10, 20 and 40) volts and (5%, 15% and 30%) concentration. The acid used for fabricated these nano porous anodic alumina templates is phosphoric (H₃PO₄).

The effect of voltage and concentration of electrolyte on the structure of nano porous anodic alumina (PAA), via electrochemical anodizing of aluminum alloy were studied. Morphology of the PAA was characterized by scanning electron microscopy (SEM). The pore diameter and weight change of the specimen before and after anodizing process were measured. The average pore diameters increased with increasing anodizing voltage as well as acid concentration. The weight change after anodizing reflected the nature of formed layer. There was weight gain in case of barrier oxide layer and weight loss in case of porous oxide layer.

Roughness values are directly proportional to anodizing voltage and acid concentration.

The corrosion behavior was deliberated by using potentiodynamic test using 0.1 M NaCl solution. When the anodizing voltage increases the corrosion rate increases.

In general formation of barrier oxide layer in 5% concentration at (5 and 10) volts . The porous oxide layer was formed at another conditions .

Chapter One

Introduction