

SEISMIC CAPACITY ASSESSMENT OF EXISTING RC BUILDINGS IN THE SUDAN BY USING PUSHOVER ANALYSIS

By

MOHAMMED AHMED IBRAHIM ISMAEIL

A thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

STRUCTURAL ENGINEERING

SEISMIC CAPACITY ASSESSMENT OF EXISTING RC BUILDINGS IN THE SUDAN BY USING PUSHOVER ANALYSIS

By

MOHAMMED AHMED IBRAHIM ISMAEIL

A thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

STRUCTURAL ENGINEERING

Under the Supervision of

MOHAMED EZZAT SOBAIH

Professor of Structures
Structural Engineering Dept.
Faculty of Engineering
Cairo University

ADEL YEHIA AKL

Professor of Structures
Structural Engineering Dept.
Faculty of Engineering
Cairo University

SEISMIC CAPACITY ASSESSMENT OF EXISTING RC BUILDINGS IN THE SUDAN BY USING PUSHOVER ANALYSIS

By

MOHAMMED AHMED IBRAHIM ISMAEIL

A thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In STRUCTURAL ENGINEERING

Approved by the Examining Committee

Prof. Dr. Mohamed Ezzat Sobaih, Thesis Main Advisor

Professor of Structures, Cairo University, Faculty of Engineering, Structural Engineering Department

Prof. Dr. Adel Yehia Akl, Thesis Advisor

Professor of Structures, Cairo University, Faculty of Engineering, Structural Engineering Department

Prof. Dr. Abd-Alrahman Bazaraa, Internal Examiner

Professor of Structures, Cairo University, Faculty of Engineering, Structural Engineering Department

Prof. Dr. Omar El-Nawawy, External Examiner

Professor of RC Structures, Ain Shams University, Faculty of Engineering, Structural Engineering Department

Engineer: Mohammed Ahmed Ibrahim Ismaeil

Date of Birth : 1 / 7 / 1979 **Nationality :** Sudanese

E-mail: <u>abunama79@hotmail.com</u>

abunama77@hotmail.com

Phone: 00249912105303

Address: Khartoum-Sudan-Sudan University for Science and

Technology-Civil Engineering Department

Registration Date: 1 / 10 / 2011

Awarding Date: / / 2015

Degree: Doctor of Philosophy

Department : Structural Engineering Department **Supervisors :** 1-Prof. Dr. Mohamed Ezzat Sobaih

2-Prof. Dr. Adel Yehia Akl

Examiners: 1-Prof. Dr. Mohamed Ezzat Sobaih

2-Prof. Dr. Adel Yehia Akl

3-Prof. Dr. Abd-Alrahman Sadek Bazaraa

4-Prof. Dr. Omar Ali Mousa El-Nawawy – Ain Shams University

Title of Thesis: Seismic Capacity Assessment of Existing RC Buildings in

The Sudan by Using Pushover Analysis

Key Words: Pushover, Seismic capacity, Existing buildings, The Sudan.

Summary:

The Sudan has low-to-moderate seismic activity; most of existing buildings in The Sudan were designed only for gravity load. The aim of this thesis is to evaluate seismic performance of existing low-to-mid-rise Reinforced Concrete (RC) buildings in The Sudan. The buildings, which consist of 4, 6,8, and 10 stories, are designed according to British standard code (BSI) and American code (ACI). Pushover analysis has been performed. Results showed that the buildings designed using the (ESEE using BSI) has a greater capability to resist seismic loads than the (IBC2012 using ACI) design.

Acknowledgements

I would like to express my sincere gratitude, and I am grateful for **Prof. Dr.**Mohamed Ezzat Sobaih, Professor of Structures, Structural Engineering Dept.,
Faculty of Engineering, Cairo University, for technical supervision, guidance and continuous encouragement. I wish him and his family good health and wellness.

Sincere thanks and deepest appreciation for **Prof. Dr. Adel Yehia Akl**, Professor of Structures, Structural Engineering Dept., Faculty of Engineering, Cairo University, for his technical supervision and guidance and continuous encouragement during the thesis preparation.

Special thanks are due to Sudan University of science and technology. I would like to take this opportunity to thank my parents, my family for their continuous support and encouragement throughout my life. I extend my sincere thanks to my wife, Samraa, my son Ahmed, and my lovely daughters Ethar and Thana for their patience.

Table of Contents

Ite	m No. Item Name	Page No
AC	KNOWLEDGEMENTS	I
TAI	BLE OF CONTENTS	II
LIS	ST OF TABLES	IV
LIS	ST OF FIGURES	\mathbf{VI}
NO	OMENCLATURE	IX
ABS	STRACT	XI
Сн	IAPTER 1: INTRODUCTION	1
	Introduction	1
1.2	Problem Definition	1
1.3	Research Objectives	1
	Justifications for Doing this Research	1
		2
1.6	Thesis Organization	2
Сн	APTER 2: LITERATURE REVIEW	4
2.1	Introduction	4
2.2	Some Seismic Studies Carried out on The Sudan	4
2.2	Some Studies on Pushover Analysis	6
CH	APTER 3: PUSHOVER ANALYSIS	11
3.1	Introduction	11
3.2	Pushover Methodology	11
3.3	Application Pushover Analysis	11
	Performance Levels Described by Pushover Analysis	13
3.5	Seismic Demand and Performance Point	14
	Pushover curves	15
3.7		16
	3.7.1 Capacity Spectrum Method	16
	3.7.2 The N2 Method	17
	APTER FOUR: ANALYSIS AND DESIGN OF STUDIED BUILDINGS	18
4.1	Introduction	18
4.2	•	18
	4.2.1 Building description	18
1.2	4.2.2 Numerical modelling	20
4.3	Earthquake Loads 4.3.1 Seismic map for The Sudan	21 21
4.4	1	22
7.7	4.4.1 Distribution of horizontal seismic force	22
4.5		24
T. J	4.5.1 Mapped acceleration parameters	26
	4.5.2 Vertical distribution of base force	26
4.6	Design of Beams and Columns	28
	4.6.1 Beam design	28
	4.6.1.1 Beams sections design	28
	4.6.2 Column design	28
	4.6.2.1 Four stories building columns sections design	28
	4622 Six stories building columns sections design	30

Iter	n No.	Item Name	Page No.
		4.6.2.3 Eight stories building columns sections design	31
		4.6.2.4 Ten stories building columns sections design	32
Сна	PTER F	IVE: THE RESULTS OF PUSHOVER ANALYSIS ACCORDING TO ESEE	34
5.1	Introd	uction	34
5.2	Analy	sis of Building	34
5.3	Base s	hear versus top displacement	34
5.4	Pusho	ver Curves Using ESEE Loads	38
5.5	The pe	erformance point	40
5.6	Comp	arison of Base Force and Displacement for 4, 6,8,10 stories	47
5.7	Comp	arison of Drift for 4, 6,8,10 Stories	48
	5.7.1	Lateral drifts	48
	5.7.2	Story Drift (Δ)	49
5.8	Discus		50
	5.8.1	Capacity curve	50
	5.8.2	Plastic hinges mechanism	50
		Story drifts	50
5.9	Conclu	usions	50
		X: THE RESULTS OF PUSHOVER ANALYSIS ACCORDING TO IBC2012	53
6.1	Introd		53
6.2		Shear versus Top Displacement	53
6.3		ver Curves Using IBC2012 Loads	56
		arison of Base Force and Displacement for 4,6,8,10 Stories	65
6.5	_	arison of Drift for 4,6,8,10 Stories	66
		Story drift calculations (Δ)	66
		Deflection and drift limits	66
6.6	Discus		68
		Capacity curve	68
		Plastic hinges mechanism	68
		Story drifts	68
6.7	Conclu		68
		EVEN: COMPARISON BETWEEN ESEE AND IBC2012	70
	Introd		70
7.2	_	arison Between ESEE and IBC2012	70
	7.2.1	Performance point according to ESEE.	72 72
	7.2.2	Performance point according to IBC2012	73
	7.2.3	Plastic hinges distribution using IBC2012 loads	74 70
G	7.2.4	Plastic hinges distribution using ESEE loads	78
		CIGHT: CONCLUSION AND SUGGESTIONS FOR FUTURE RESEARCH	83
8.1	Conclu		83
8.2		stions for Future Research	83
	PENDI		85
REI	FEREN	CES	88

List of Tables

Table No.	Table Name	Page No
Table 3.1	Performance level of building	14
Table 4.1	Sections of columns and beams of the frame building.	20
Table 4.2	Lateral load distribution with height for 4 story building using ESEE 1988	23
Table 4.3	Lateral load distribution with height for 6 story building using ESEE 1988	23
Table 4.4	Lateral load distribution with height for 8 story building using ESEE 1988	24
Table 4.5	Lateral load distribution with height for 10 story building using ESEE 1988	24
Table 4.6	Mapped acceleration parameters	26
Table 4.7	Lateral load distribution for 4 stories building by using IBC2012	27
Table 4.8	Lateral load distribution for 6 stories building by using IBC2012	27
Table 4.9	Lateral load distribution for 8 stories building by using IBC2012	27
Table 4.10	Lateral load distribution for 10 stories building by using IBC 2012	28
Table 4.11	Section properties in 4-stories Building using ESEE code.	29
Table 4.12	Section properties in 4-stories using building IBC2012 code.	29
Table 4.13	Section properties in 6-stories Building using ESEE code.	30
Table 4.14	Section properties in 6-stories building using IBC2012 code.	30
Table 4.15	Section properties in 8-stories building using ESEE Code.	31
Table 4.16	Section properties in 8-stories building using IBC2012 Code.	32
Table 4.17	Section properties in 10-stories building using ESEE Code.	33
Table 4.18	Section properties in 10-stories building using IBC2012 Code.	33
Table 5.1	Plastic hinge pattern for pushover analysis at different damage level	36
	for 4-stories building using ESEE	
Table 5.2	Plastic hinge pattern for pushover analysis at different damage level	36
	for 6-stories building using ESEE	
Table 5.3	Plastic hinge pattern for pushover analysis at different damage level	36
	for 8-stories building using ESEE	
Table 5.4	Plastic hinge pattern for pushover analysis at different damage level	37
	for 10-stories building using ESEE	
Table 5.5	Tabular data for demand and capacity Pushover curves for 4-stories	42
	building using ESEE	
Table 5.6	Tabular data demand and capacity Pushover curves for 6-stories	42
	building using ESEE	
Table 5.7	Tabular data for demand and capacity Pushover curves for 8-stories	43
T 11 70	building using ESEE	40
Table 5.8	Tabular data for demand and capacity Pushover curves for 10-stories	43
T 11 70	building using ESEE	40
Table 5.9	Numbers of plastic hinges at the performance point	48
Table 5.10	Drift for 4 stories building	49
Table 5.11	Drift for 6 stories building.	49
Table 5.12	Drift for 8 stories building	49
Table 5.13	Drift for 10 stories building.	50
Table 6.1	Plastic hinge pattern for pushover analysis at different damage level	54
	for 4-stories building using IBC2012	

Table No.	Table Name	Page No
Table 6.2	Plastic hinge pattern for pushover analysis at different damage level	54
	for 6-stories building using IBC2012	
Table 6.3	Plastic hinge pattern for pushover analysis at different damage level	54
	for 8-stories building using IBC2012	
Table 6.4	Plastic hinge pattern for pushover analysis at different damage level	55
	for 10-stories building using IBC2012	
Table 6.5	Tabular data for demand and capacity pushover curves for 4-stories	63
	building using IBC2012	
Table 6.6	Tabular data for demand and capacity pushover curves for 6-stories	64
	building using IBC2012	
Table 6.7	Tabular data for demand and capacity pushover curves for 8-stories	64
	building using IBC2012	
Table 6.8	Tabular data for demand and capacity pushover curves for 10-stories	64
	building using IBC2012	
Table 6.9	Number of plastic hinges at the performance point	65
Table 6.10	Drift for 4 stories building	66
Table 6.11	Drift for 6 stories building	66
Table 6.12	Drift for 8 stories building	66
Table 6.13	Drift for 10 stories building	67

List of Figures

Figure No.	Figure Name	Page No
Figure 3.1	Types of seismic analysis	11
Figure 3.2	Construction of pushover curve	12
Figure 3.3	Design capacity curve	12
Figure 3.4	Inelastic idealized force-deformation relationships	12
Figure 3.5	Safe design and unsafe design	13
Figure 3.6	Performance levels	13
Figure 3.7	Determination of performance point	14
Figure 3.8	Capacity and demand	15
Figure 3.9	Plastic hinges stages	15
Figure 3.10	Graphical representation of capacity spectrum method	16
Figure 4.1	Dimensions of the studied buildings	19
Figure 4.2	2D Models for the 4, 6,8 and 10 stories buildings	21
Figure 4.3	Seismic hazard map of The Sudan	21
Figure 4.4	Lateral force distributions	23
Figure 4.5	Label of columns for 4-stories building	29
Figure 4.6	Label of columns for 6-stories building	30
Figure 4.7	Label of columns for 8-stories building	31
Figure 4.8	Label of columns for 10-stories building	32
Figure 5.1	Base forces vs. displacement curve for 4-stories building using ESEE	34
Figure 5.2	Base forces vs. displacement curve for 6-Stories Building using ESEE	35
Figure 5.3	Base forces vs. displacement curve for 8-Stories Building using ESEE	35
Figure 5.4	Base forces vs. displacement curve for 10-Stories Building using ESEE	36
Figure 5.5	Pushover Curve for 4-stories building using ESEE	38
Figure 5.6	Pushover curve for 6-stories building using ESEE	38
Figure 5.7	Pushover curve for 8-stories building using ESEE	39
Figure 5.8	Pushover curve for 10-stories building using ESEE	39
Figure 5.9	Combined pushover curve for the four buildings using ESEE	40
Figure 5.10	Performance point for 4-stories building using ESEE	40
Figure 5.11	Performance point for 6-stories building using ESEE	41
Figure 5.12	Performance point for 8-stories building using ESEE	41

Figure No.	Figure Name	Page No.
Figure 5.13	Performance point for 10-stories building using ESEE	42
Figure 5.14 (a)	Hinge model at yielding 4-stories building using ESEE	43
Figure 5.14 (b)	Hinge model at ultimate state 4-stories building using ESE	44
Figure 5.15 (a)	Hinge model at yielding 6-stories building using ESEE	44
Figure 5.15 (b)	Hinge model at ultimate state 6-stories building using ESEE	45
Figure 5.16 (a)	Hinge model at yielding 8-stories building using ESEE	45
Figure 5.16 (b)	Hinge model at ultimate state 8-stories building using ESEE	46
Figure 5.17 (a)	Hinge model at yielding 10-stories building using ESEE	46
Figure 5.17 (b)	Hinge model at ultimate state 10-stories building using ESEE	47
Figure 5.18	Comparison of base force of 4, 6,8,10 stories at the performance point	47
Figure 5.19	Comparison of displacement of 4, 6, 8, 10 stories at the performance point	48
Figure 6.1	Base forces vs. displacement curve for 4-stories building using IBC2012	52
Figure 6.2	Base force vs. displacement curve for 6-stories building using IBC2012	53
Figure 6.3	Base force vs. displacement curve for 8-stories building using IBC2012	53
Figure 6.4	Base forces vs. displacement curve for 10-stories building using IBC2012	54
Figure 6.5	Pushover curve for 4-stories building using IBC2012	56
Figure 6.6	Pushover curve for 6-stories building using IBC2012	56
Figure 6.7	Pushover curve for 8-stories building using IBC2012	56
Figure 6.8	Pushover curve for 10-storey building using IBC2012	57
Figure 6.9	Combined pushover curve for the four building using IBC2012	57
Figure 6.10	Performance point for 4-stories building using IBC2012	57
Figure 6.11	Performance point for 6-stories building using IBC2012	58
Figure 6.12	Performance point for 8-stories building using IBC2012	58
Figure 6.13	Performance point for 10-stories building using IBC2012	59
Figure 6.14(a)	Hinge model at yielding for 4-stories building using IBC2012	59
Figure 6.14(b)	Hinge model at ultimate state for 4-stories building using IBC2012	60
Figure 6.15(a)	Hinge model at yielding for 6-stories building using IBC2012	60
Figure 6.15(b)	Hinge model at ultimate stat for e 6-stories building using IBC2012	61
Figure 6.16(a)	Hinge model at yielding for 8-stories building using IBC2012	61
Figure 6.16(b)	Hinge model at ultimate state for 8-stories building using IBC2012	83
Figure 6.17(a)	Hinge model at yielding for 10-stories building using IBC2012	62
Figure 6.17 (b)	Hinge model at ultimate state for 10-stories building using IBC2012	63
Figure 6.18	Comparison of base force of 4, 6,8,10 stories at the performance point	64

Figure No.	Figure Name	Page No.
Figure 6.19	Comparison of displacement of 4,6, 8, 10 stories at the performance point	65
Figure 7.1	Pushover curves for 4-storey building using IBC2012 and ESEE	69
Figure 7.2	Pushover curves for 6-storey building using IBC2012 and ESEE	70
Figure 7.3	Pushover curves for 8-storey building using IBC2012 and ESEE	70
Figure 7.4	Pushover curves for 10-storey building using IBC2012 and ESEE	70
Figure 7.5	Performance point of 4 and 6 stories building using ESEE	71
Figure 7.6	Performance point of 8 and 10 stories building using ESEE	71
Figure 7.7	Performance point of 4 and 6 stories building using IBC2012	72
Figure 7.8	Performance point of 8 and 10 stories building using IBC2012	72
Figure 7.9 (a)	Hinge model at yielding for 4-stories building using IBC2012	73
Figure 7.9 (b)	Hinge model at ultimate state for 4-stories building using IBC2012	73
Figure 7.10(a)	Hinge model at yielding for 6-stories building using IBC2012	74
Figure 7.10(b)	Hinge model at ultimate state for 6-stories building using IBC2012	74
Figure 7.11(a)	Hinge model at yielding for 8-stories building using IBC2012	75
Figure 7.11(b)	Hinge model at ultimate state for 8-stories building using IBC2012	75
Figure 7.12(a)	Hinge model at yielding for 10-stories building using IBC2012	76
Figure 7.12(b)	Hinge model at ultimate state for 10-stories building using IBC2012	76
Figure 7.13(a)	Hinge model at yielding for 4-stories building using ESEE	77
Figure 7.13(b)	Hinge model at ultimate state for 4-stories building using ESEE	78
Figure 7.14(a)	Hinge model at yielding for 6-stories building using ESEE	78
Figure 7.14(b)	Hinge model at ultimate state for 6-stories building using ESEE	79
Figure 7.15(a)	Hinge model at yielding for 8-stories building using ESEE	79
Figure 7.15(b)	Hinge model at ultimate state for 8-stories building using ESEE	80
Figure 7.16(a)	Hinge model at yielding for 10-stories building using ESEE	80
Figure 7.16(b)	Hinge model at ultimate state for 10-stories building using ESEE	81

Nomenclature

IBC International Building Code

ESEE Egyptian Society for Earthquake Engineering

PGA Peak Ground Acceleration

ATC Applied Technology Council

SAP Structural Analysis Program

SBC Saudi Building Code

IO Immediate Occupancy

STAAD Structural Analysis and Design

ASCE American Society of Civil Engineering

RC Reinforced Concrete

FEMA Federal Emergency Management Agency

LS Life safety level

CP Collapse prevention

CM Coefficient Method

CSM Capacity-Spectrum Method

 $V-\Delta$ Base Shear – Roof Displacement

MDOF Multi-Degree of Freedom

SDOF Single-Degree of Freedom

N2 Nonlinear for SDOF and MDOF

AD Acceleration–Displacement

Spectral pseudo-Acceleration

Spectral Displacement.

POA Pushover Analysis

V_b Base Shear

2D Two Dimensions

C_s Seismic Coefficient

W_t Total Weight

p Incidence factor

DL Dead Load

LL Live Load.

h_i Height over the base to the level of the (ith) floor.

W_i Total load on the (ith) floor

V Total horizontal seismic force.

F_i Part of the total horizontal seismic force assigned to the (ith) floor.

F_t Additional concentrated force at top story

H/d Height to width ratio of the building)

R Response modification factor

I Occupancy importance factor

N Number of stories

T Fundamental period of the structure (sec)

F_a Acceleration-based site coefficient

F_v Velocity-based site coefficient

 SM_s The maximum spectral response acceleration at short periods adjusted for site class

 SM_1 The maximum spectral response acceleration at a period of 1 sec adjusted for site class

SD_s The design spectral response acceleration at short periods

 SD_1 The design spectral response acceleration at a period of 1 sec

S₁ The mapped spectral accelerations for a 1- second period

Ss The mapped spectral accelerations for short period.

F_x Applied lateral force at level 'x'

h Story height

k An exponent related to the structure period as follows:

MATLAB Matrix Laboratory

ISACOL Information Systems Application on Reinforced Concrete Columns