

Faculty of Engineering Department of Structural Engineering

Theoretical Study for Punching Behavior of Light Weight Concrete Slabs

Thesis
Submitted in fulfillment of the
Requirements for the degree of

MASTER OF SCIENCE In

STRUCTURAL ENGINEERING

By

MAGED RAMSIS BOCTOR EL-ABACY

Supervised by

Prof. Dr. Omar Ali Mosa El-Nawawy

Prof. of Concrete Structure, Dept.of Str.Engineering Faculty of Engineering, Ain Shams University

Prof. Dr. Amr Hussein Abdel Azim Zaher

Prof. of Concrete Structure, Dept.of Str.Engineering Faculty of Engineering, Ain Shams University

Dr. Ahmed Mohamed Abdel Khalek

Department of Structural Engineering Faculty of Engineering, Future University

CAIRO - 2018

THEORETICAL STUDY FOR PUNCHING BEHAVIOR OF LIGHT WEIGHT CONCRETE SLABS

by

Eng. Maged Ramsis Boktor El-Abacy

B.Sc. in Civil Engineering Ain Shames University (1985)

Examiners Committee

Name and Affiliation	Signature
Prof. Dr. Ahmed Mohamed Farahat	•••••
Professor of Concrete Structures	
Faculty of Engineering, Cairo University	
Prof. Dr. Osama Hamdy Abd El-Wahed	•••••
Professor of Concrete Structures	
Faculty of Engineering, Ain-Shams University	
Prof. Dr. Omar Ali Mosa El-Nawawy	•••••
Professor of Concrete Structures	
Faculty of Engineering, Ain-Shams University	
Prof. Dr. Amr Hussein Zaher	•••••
Professor of Concrete Structures	
Faculty of Engineering, Ain-Shams University	

Date: 30 January 2018

AUTHOR

Name : Maged Ramsis Boctor El-Abacy

Date of Birth : 6 August 1963

Place of Birth : Alexandria, Egyt

Academic Degree : B.Sc in Structural Engineering

University : Ain Shams University

Date : June 1985

Grade : Pass

And

Academic Degree : Diplom of Higher studies in Structural Engineering

University : Ain Shams University

Date : August 2011

Grade : CPA (A-) "3.47" and The Project grade (A) "4.00"

ABSTRACT

Most of the current concrete research focuses on high-performance concrete, by which is meant a cost effective material that satisfies demanding performance requirements, including durability. Lightweight concrete (LWC) is very important to the construction industry due to its cost effective and highly advantageous. Structural lightweight concrete mixtures can be designed to achieve similar strengths as normal weight concrete; the same is true for other mechanical and durability performance requirements. This paper presented a Theoretical Study for Punching Behavior of Light Weight Concrete Slabs. Twelve normal weight concrete finite element models developed by "Ansys 14" divided into two stages, First stage is a models developed to simulate control specimens for verifying the used material parameters and Second stage is a models developed by using (NWC) parameters that verified from first stage to correspond the (LWC) physical model with the same properties. These models were tested to failure under concentrated punching loads through the program. The results of first stage show a good agreement between the experimental and the program results. Thus, The proposal models in first stage have sufficient accurate to use in second stage. The concrete unit weight, slab's thickness, shear reinforcement, and loaded plate area were the test parameters. A comprehensive presentation of the programmatic procedure, testes and results is undertaken in the paper. The punching shear loads were obtained from the test results for all finite element models (FEM) and then calculate the punching strength reduction factor (λ) for each case study. The main objective of this research is to find a relation between reduction strength factor (λ) and the unit weight of concrete which was developed using mathematical regression techniques and compared with the available equations in other codes.

i

ACKNOWLEDGEMENT

First of all, I thank GOD who guided and helped me to finish this work in the proper shape.

I would like to express my deepest gratitude and appreciation to my supervisors, Prof. Dr. Eng. Omar Ali Mosa El-Nawawy and Dr. Eng. Ahmed Mohamed Abdel Khaleq for their guidance, interest, patience and encouragement during the period of the research.

Their valuable comments and suggestions during the research program and their efforts in reviewing the manuscript are greatly appreciated.

I am deeply indebted to my friends for their support and encouragement.

TABLE OF CONTENTS

			Pages
ABS	STRA	CT	i
AC]	KNOV	VLEDGEMENTS	ii
TAl	BLE O	OF CONTENTS	iii
LIS	T OF	TABLES	X
LIS	T OF	FIGURES	xiii
NO'	TATI(ONS	xxii
LIS	T OF	ABBREVIATIONS	xxiv
CH.	APTE	R 1 : INTRODUCTION	
1.1	Gener	al	1
1.2	Resea	rch Objective	3
1.3	Scope	of Work	4
1.4	Thesis	Outline	6
CH	APTE	R 2: LITERATURE REVIEW	
2.1	Introd	uction	9
2.2	Lighty	weight Concrete	9
	2.2.1	Historical Back Ground	9
	2.2.2	Advantages and Disadvantages	10
		2.2.2.1 Advantages	10
		2.2.2.2 Disadvantages	13
	2.2.3	Constitution of LWC	14

	2.2.4	Types of lightweight concrete (LWC)	16
	2.2.5	Applications of LWC	18
	2.2.6	Examples of Structural Lightweight Concrete Applications	19
2.3	Defini	itions	21
	2.3.1	Lightweight Concrete LWC	21
	2.3.2	Lightweight Aggregate Concrete	24
2.4	Prope	rties of Structural LWC	25
	2.4.1	Compressive Strength	25
	2.4.2	Modulus of Elasticity	30
	2.4.3	Poisson's ratio	31
	2.4.4	Tensile Strength	32
	2.4.5	Thermal Conductivity	34
	2.4.6	Resistance against Chloride	36
2.5	Mix d	esign of the lightweight concrete	36
2.6	Punch	ing Shear of RC Slabs	38
	2.6.1	What is Punching Shear?	38
	2.6.2	Historical Back Ground	40
	2.6.3	Concrete Punching Shear Phenomenon	41
	2.6.4	Mechanism of Punching Failure in Slab-Column Connections	44
	2.6.5	Slab-Column Framed Structures	45
	2.6.6	Punching Shear Failure And Shear Reinforcement in	
		Slab-Column Connection	47
	2.6.7	Review Of Design Provisions For Punching Shear	53
	2.6.8	Codes of Practice	61
		2.6.8.1 The American Code ACI 318M-2008	61

			2.6.8.1.1	Lightweight concrete	61
			2.6.8.1.2	Provisions for slabs	62
		2.6.8.2	The Ame	rican Code ACI 318M-11	65
			2.6.8.2.1	Lightweight concrete	65
			2.6.8.2.2	Provisions for slabs	66
		2.6.8.3	The Egyp	tian Code of Practice ECP 203-2007	67
CH	APTE	R 3 : RI	ESEARC	H PROGRAM	
3.1	Introd	uction .			70
	3.1.1	First Go	oal		70
	3.1.2	Second	Goal		71
3.2	Resear	rch Progr	am		72
	3.2.1	Literatu	re Experim	ental case studies	72
	3.2.2	"ANSY	S 14" Finit	e Elements Models (FEM)	74
		3.2.2.1	Element t	ype	76
			3.2.2.1.1	Solid65	76
			3.2.2.1.2	Link 8-3D	78
		3.2.2.2	Material 1	Properties of (FEM)	81
			3.2.2.2.1	Modulus of Elasticity for NWC Slabs	81
			3.2.2.2.2	Poisson's ratio for NWC Slabs	83
			3.2.2.2.3	Tensile Strength for NWC Slabs	84
			3.2.2.2.4	Compressive Strength for NWC Slabs	86
			3.2.2.2.5	Shear Transfer for NWC Slabs	87
			3.2.2.2.6	Stress-Strain curve for Steel	87
			3.2.2.2.7	Modulus of Elasticity for Steel "Es"	88

			3.2.2.2.8 Poisson's ratio for Steel	88
		3.2.2.3	Numbering Controls 8	89
		3.2.2.4	Meshing 8	89
		3.2.2.5	Bond between Concrete and Reinforcement	90
		3.2.2.6	Solution planning	91
			3.2.2.6.1 Automatic Time Stepping	91
			3.2.2.6.2 Loading 9	92
			3.2.2.6.3 "Newton-Raphson" Method for Analysis	93
	3.2.3	Details of	of "ANSYS 14" Models	96
		3.2.3.1	First goal	96
		3.2.3.2	Second goal	12
			3.2.3.2.1 Designed Slabs Variables	17
CH	APTE	R 4 : PF	OGRAM RESULTS AND DISCUSSIONS	
4.1	Introd	uction .		18
	4.1.1	First Go	al 1	18
	4.1.2	Second	Goal	19
4.2	Progra	ım Result	s 1	19
	4.2.1	First Go	al Results	19
		4.2.1.1	Results of Group (1)	20
			4.2.1.1.1 Results of LWC physical models	20
			4.2.1.1.2 Results of FEMs (NWC models)	22
		4.2.1.2	Results of Group (2)	27
			4.2.1.2.1 Results of LWC physical models	27
			4.2.1.2.2 Results of FEMs (NWC models) 1	28

	4.2.1.3	Discussio	n of Progran	n Results (first goal)	131
		4.2.1.3.1	Punching st	rength reduction factor (λ)	131
		4.2.1.3.2	Relation be	tween Punching Reduction	
			Factor (λ) a	nd (LWC) density	132
4.2.2	Second	Goal Resul	lts		133
	4.2.2.1	Finite Ele	ment Results	S	134
		4.2.2.1.1	FEM Norm	al weight concrete slabs	134
			4.2.2.1.1.1	Verification Slab "N2"	135
			4.2.2.1.1.2	FEM Slab (NL1) results	137
			4.2.2.1.1.3	FEM Slab (NL2) results	141
			4.2.2.1.1.4	FEM Slab (NL3) results	145
			4.2.2.1.1.5	FEM Slab (NL4) results	149
			4.2.2.1.1.6	FEM Slab (NL5) results	153
			4.2.2.1.1.7	FEM Slab (NL6) results	157
			4.2.2.1.1.8	FEM Slab (NL7) results	161
		4.2.2.1.2	FEM Light	weight concrete slabs	165
			4.2.2.1.2.1	FEM Slab (L1) results	166
			4.2.2.1.2.2	FEM Slab (L2) results	170
			4.2.2.1.2.3	FEM Slab (L3) results	174
			4.2.2.1.2.4	FEM Slab (L4) results	178
			4.2.2.1.2.5	FEM Slab (L5) results	182
			4.2.2.1.2.6	FEM Slab (L6) results	186
	4.2.2.2			xure crack load and ultimate	190
		4.2.2.2.1		of first flexure crack load (Pcr)	190

	4.2.2.2.2	2 Calculation of ultimate punching load (Pu) for LWC Slabs	19
	4.2.2.2.3	Calculation of first flexure crack load (Pcr) for NWC Slabs	19
	4.2.2.2.4	4 Calculation of ultimate punching load (Pu) for NWC Slabs	19
CH	APTER 5 : CODE PR	REDICTIONS	
5.1	Comparison with code p	redictions	20
	5.1.1 Punching Reduct	ion Factor (λ) according to Program Results	20
	5.1.2 Punching Reduct	ion Factor (λ) according to ACI318M-14	20
	5.1.3 Comparison betw	veen Program Results and ACI318M-14	21
CH	APTER 6 : SUMMAI	RY AND CONCLUSION	
6.1	Introduction		21
6.2	Summary		21
6.3	Conclusion		2
6.4	Recommendations for fu	ture research	2
RFI	FERENCES		2

LIST OF TABLES

		Pages
CHAPTE	CR 2: LITERATURE REVIEW	
Table 2.1	Relation between compressive strength and cement content	29
СНАРТЕ	CR 3 : RESEARCH PROGRAM	
Table 3.1	Summary for group (1) Specimens data, after "Ahmed Ali"	73
Table 3.2	Summary for group (2) Specimens data, after "K.S. YOUM"	74
Table 3.3	Geometrical dim. and materials properties of "Ansys 14" FEM	97
Table 3.4	Main parameters of case study for type 2 (NWC)	113
Table 3.5	Main parameters of case study for type 3 (LWC)	114
Table 3.6	Geometrical dim. and materials properties of "Ansys 14" FEM for type 2 (NWC)	115
Table 3.7	Geometrical dim. and materials properties of "Ansys 14" FEM for type 3 (LWC)	116
СНАРТЕ	CR 4 : PROGRAM RESULTS AND DISCUSSIONS	
Table 4.1	Summary for ultimate punching loads of group (1) Specimens	126
Table 4.2	Summary for ultimate punching loads of group (2) Specimens	130
Table 4.3	Results of FEM equivalent (NWC) slabs-Type (2)	134
Table 4.4	Punching Load of Experimental Slab vs. Finite Element Model At Ultimate Load for "N2"	135
Table 4.5	Main results for slab (NL1)	140
Table 4.6	Main results for slab (NL2)	144
Table 4.7	Main results for slab (NL3)	148

Table 4.8	Main results for slab (NL4)
Table 4.9	Main results for slab (NL5)
Table 4.10	Main results for slab (NL6)
Table 4.11	Main results for slab (NL7)
Table 4.12	Results of FEM (LWC) slabs - Type (3)
Table 4.13	Punching Load of Experimental Slab vs. Finite Element Model At Ultimate Load for "L1"
Table 4.14	Main results for slab (L1)
Table 4.15	Punching Load of Experimental Slab vs. Finite Element Model At Ultimate Load for "L2"
Table 4.16	Main results for slab (L2)
Table 4.17	Punching Load of Experimental Slab vs. Finite Element Model At Ultimate Load for "L3"
Table 4.18	Main results for slab (L3)
Table 4.19	Punching Load of Experimental Slab vs. Finite Element Model At Ultimate Load for "L4"
Table 4.20	Main results for slab (L4)
Table 4.21	Punching Load of Experimental Slab vs. Finite Element Model At Ultimate Load for "L5"
Table 4.22	Main results for slab (L5)
Table 4.23	Punching Load of Experimental Slab vs. Finite Element Model At Ultimate Load for "L6"
Table 4.24	Main results for slab (L6)
Table 4.25	Analytical results of First Flexural load (Pcr) -LWCS
Table 4.26	Analytical results of ultimate punching load (P _u) - LWCS

Table 4.27	Analytical results of First Flexural load (Pcr) -NWCS	193
Table 4.28	Analytical results of ultimate punching load (P_u) - NWCS	195
СНАРТЕ	R 5 : CODE PREDICTIONS	
Table 5.1	Modification factor (λ) according to ACI318M-14	209

LIST OF FIGURES

		Pages
CHAPTE	CR 2: LITERATURE REVIEW	
Fig. 2.1	Approximate unit weight and use classification of lightweight aggregate concretes	16
Fig. 2.2	Concept of structural lightweight foamed concrete	23
Fig. 2.3	Compressive strength versus age of lightweight concrete	28
Fig. 2.4	Modulus of elasticity	31
Fig. 2.5	Splitting tensile strength: moist-cured concrete	33
Fig. 2.6	Splitting tensile strength: air-dried concrete	34
Fig. 2.7	Piper's Row Car Park, Wolverhampton, UK, 1997	39
Fig. 2.8	Shear Failure of Slabs	42
Fig. 2.9	Typical Punching Failure	43
Fig. 2.10	Slab-Column Framed System	47
Fig. 2.11	Perimeter of Critical Section	49
Fig. 2.12	Common Alternatives for Increasing Shear Resistance in Slab-	
	Column Connections	51
Fig. 2.13	Intersection between inclined cracks with shear reinforcement	52
Fig. 2.14	Critical Section for Diagonal Tensile Stress	54
Fig. 2.15	Slab Effective Width for Unbalanced Moment	58
Fig. 2.16	Drift versus Gravity Shear Ratios Interaction Diagram	60
Fig. 2.17	Shear critical section for different codes	63