DETECTION OF WATER POLLUTION IN REAL TIME BY USING UNDERWATER SENSORS NETWORK

Submitted By

Sameh Sayed Mohamed Medany

B. Sc. Electrical Engineering, Military Technical College, 1999

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Science

Department of Environmental Engineering Science
Institute of Environmental Studies and Research
Ain Shams University

APPROVAL SHEET

DETECTION OF WATER POLLUTION IN REAL TIME BY USING UNDERWATER SENSORS NETWORK

Submitted By

Sameh Sayed Mohamed Medany

B. Sc. Electrical Engineering, Military Technical College, 1999
This Thesis towards a Master Degree in Environmental Science
Has Been Approved by:

Name Signature

1-Prof. Dr. Abd El Haleem Abd El Naby Zekri

Prof. of communication engineering, Faculty of Engineering
Ain Shams University

2- Prof. Dr. Hadyea Saeed El Henawy

Prof. of communication engineering & Ex-Dean, Faculty of Engineering
Ain Shams University

3- Dr. Taha Abd El Azeem Abd El Razek

Assoc. Prof., Department of Basic Sciences, Institute of Environmental
Studies & Research, Ain Shams University

4- Dr. Noha Samir Donia

Assoc. Prof., Department of Engineering Science, Institute of Environmental
Studies & Research, Ain Shams University

DETECTION OF WATER POLLUTION IN REAL TIME BY USING UNDERWATER SENSORS NETWORK

Submitted By

Sameh Sayed Mohamed Medany

B. Sc. Electrical Engineering, Military Technical College, 1999

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Science

Department of Environmental Engineering Science

Under The Supervision of:

1- Prof. Dr. Hadyea Saeed El Henawy

Prof. of communication engineering & Ex-Dean, Faculty of Engineering Ain Shams University

2- Dr. Noha Samir Donia

Assoc. Prof., Department of Engineering Science, Institute of Environmental Studies & Research, Ain Shams University

3- Dr. Mohamed Abd El Hamid Shaalan

Assoc. Prof., Department of Computer Science, Faculty of Engineering, Ain Shams University

ACKNOWLEDGEMENT

First and foremost I would like to thank **ALLAH** most beneficent and merciful for helping me to accomplish this study.

I would like to express my utmost appreciation and deepest gratitude to

Prof. Dr. Hadyea Mohamed El Hennawy,

Dr. Noha Samir Donia,

æ

Dr. Mohamed Abd Elhamid Shaalan

For their large and consistent interest in my thesis during the times. They are also thanked for their help guidance, unlimited support, cooperation and constructive criticism, which were kindly given, are beyond acknowledgment.

I would like also to express my sincere thanks from my heart to my great Mother for her love, devotion, and never ending support to my studies and career. Many thanks to my wife and my kids for being a source of hope and encouragement.

Abstract

Water thermal pollution is one of the most critical pollutions that threaten the Aquatic environment, any increase or decrease around water temperature standards is considered a thermal pollution. A common cause of thermal pollution is the use of water as a coolant by power plants and industrial manufacturers. When water used as a coolant then returned to the natural environment at a higher temperature, this change in temperature decreases the level of dissolved oxygen supply, and affects ecosystem composition. Fish and other aquatic organisms adapted to particular temperature range can be killed by the abrupt change in water temperature known as "thermal shock." thermal pollution may also increase the metabolic rate of aquatic animals, as enzyme activity, resulting in these organisms consuming more food in a shorter time than if their environment were not changed.

This type of pollution cannot be measured in laboratories because of the physical and chemical characteristics of water that establish chemical equilibrium with its new surroundings which results in false measurements for the water temperature parameter values. For this reason the control of water thermal pollution needs *In-situ temperature measurements*, so there is a necessity for a continuous water quality monitoring in real time to stand on the actual values of pollutants.

Different methods of water quality monitoring are illustrated in this study, discussing advantages of these methods and the challenges facing each method, Then the study scopes on the wireless monitoring of water thermal pollution through the use of locally assembled waterproofed sensors

connected to low power wireless sensor nodes which in turns communicate with the host computer through Xbee radio chip modules that support the (IEEE 802.15.4/Zigbee) wireless communication protocol. This communication protocol fill the gap of low data rate with low power consumption in the IEEE wireless communication protocols chart as presented in chapter two. Work in the study is done in many directions simultaneously, first the study used two types of local sensors, the (LM35DZ) analog temperature sensor and the (DS18B20) digital temperature sensor, validation of these sensors is done three times through the study, first after purchasing of sensors, then after waterproofing of sensors and finally after the assembly of the wireless sensor node with the implementation of the wireless connection. To receive data from sensors the study used two types of microcontrollers the (16F877A) PIC microcontroller and the Arduino Uno board that includes (Atmega328a) microcontroller, and that to determine the power consumption in both systems, also the study put into consideration the type of batteries to be used and a comparison between them in their capacities and discharge rates, in addition to the empirical experiments done to measure the signal strength of the wireless connection and to assign the optimal location for adding another sensor node to prevent signal loss between wireless nodes. Finally a visual basic software application has been designed as a user interface application for remote monitoring of all data collected from the wireless sensor nodes without the intervention of human on the process of collecting water samples.

Contents

Pag	5(
CHAPTER 1	
THE STUDY OUTLINES	
1.1. Introduction2	
1.2. Purpose of Water Quality Monitoring	
1.3. Collecting monitored data	
1.4. Methods of Water Quality Monitoring	
1.5. Problem Definition	
1.6. Overview of Sensor Network5	
1.7. Study Objectives6	
1.8. Scope of the Study6	
1.9. Chapters Overview	
CHAPTER 2	
REVIEW OF LITERATURE9	
2.1. Introduction	
2.2. Underwater acoustic networks communication architecture12	
2.2.1. Two-Dimensional Underwater Sensor Networks	
2.2.2. Three-Dimensional Underwater Sensor Networks	
2.3. Power Consumption in Underwater Sensor Networks	
2.3.1. Energy Efficiency in Underwater Sensor Networks	
2.3.2. Energy Consumption by Network Topology15	
2.4. Data Rate of Acoustic Sensor Networks	
2.5. Challenges Affecting Underwater Acoustic Sensor Networks17	
2.6. A Study Case on the Design of Acoustic Sensor Network for	
Long-Term, In-Situ Monitoring Of an Aqueous Environment	
The Zigbee protocol/ IEEE 802.15.42	

2.6.1. Operation of the Aqueous Sensor Network	. 20
2.6.2. Components of the Aqueous Sensor Node	21
2.7. Automatic Monitoring System Using Zigbee Sensor Network	24
2.7.1. The Zigbee protocol/ IEEE 802.15.4	24
2.7.2. Zigbee Network Topology	26
2.7.3. Zigbee Power Consumption	28
2.7.3.1. Modeling of Current Consumption in 802.15.4/ZigBee	
Sensor Motes	28
2.7.3.2. Reliability and Energy-efficiency in IEEE 802.15.4/ZigBee	31
2.7.3.3. Inverse Square Law	31
2.8. Zigbee/IEEE 802.15.4 Data Rate	32
2.9. Challenges Affecting Zigbee wireless Sensor Networks	. 33
2.10. Study Case on Water Quality Monitoring System Using	
Zigbee Based Wireless Sensor Network	34
2.10.1. Hardware Design	34
2.10.2. Software Design	. 37
2.11. Power consumption experimentation between	
Zigbee-based and ISM-based Implementations of WSANs	40
2.12. In-situ Zigbee Application	44
2.12.1. The Smart Coast Project	44
2.12.1.1. Multi Sensor System	45
CHAPTER 3	
MATERIALS AND METHODS	47
3.1. Introduction	48
3.2. The Environment Stage	51
3.2.1. Experimental phase	51
3.2.2 Real phase	51

3.3. Sensors Stage	52
3.3.1. LM35 precise analog temperature sensor	53
3.3.1.1. Specifications of the LM35	54
3.3.1.2. LM35 Sensor Connection Pins	54
3.3.1.3. Waterproofing of the LM35 Sensor	55
3.3.2. DS18B20 Precision 1-Wire Digital Thermometer	56
3.3.2.1. Specifications and how to use	56
3.3.2.2. Waterproofing of the DS18B20 Sensor	57
3.4. Field computation Stage	57
3.4.1. The PIC16f877A Microcontroller	58
3.4.2. The Arduino System	59
3.4.2.1. Why Using Arduino?	59
3.4.2.2. Arduino Uno Board	60
3.4.2.3. Specifications of the Arduino Uno	61
3.4.2.4. Arduino Physical Characteristics	61
3.5. Communication Stage	62
3.5.1. Difference between Zigbee & XBee	62
3.5.2. XBee Modules	63
3.5.2.1. Xbee Specifications	63
3.5.2.2. Xbee Series 1 and Series 2	64
3.5.2.3. Xbee Antennas	65
3.5.3. Configuring the Xbee Modules	66
3.6. Laboratory Computation and Database Archiving	68
3.6.1. Brief Description for the VB 6 Application	68
3.6.2. Database Application	68

CHAPTER 4

SYSTEM DESIGN & IMPLIMENTATION	. 69
4.1. Introduction	. 70
4.2. PIC and Arduino Connections	. 71
4.2.1. System Design Using PIC	. 71
4.2.1.1. Establishment of the Connection	. 71
4.2.1.2. PIC Bread Board Connections	. 75
4.2.2. System Design Using Arduino	. 76
4.2.2.1. Establishment of Connection	. 76
4.2.2.2. Arduino Breadboard Connection	. 77
4.3. Validation of Sensors	. 78
4.4. Sensors Waterproofing	. 81
4.4.1. Connection of Waterproofed DS18B20 temperature sensor	. 82
4.4.2. Validation of Sensors Underwater	. 84
4.4.2.1. Sensors Data Analysis	. 88
4.4.2.2. Sensors Time of Response	. 92
4.5. Software Design	. 97
4.5.1. The Design of Database using MS. Access	. 97
4.5.2. Design of the Visual Basic Application	101
4.6. Node Assembly	107
4.6.1. Establishment of wireless system using xbee modules	
4.6.2. System Connection	108
4.6.3. Battery Pack and Node Waterproofing	109
4.6.4. Wireless Sensor Node Range with Respect to Distance	111
4.7. On Field Measurements with Waterproofed Sensors	114
4.7.1. Measuring the Temperature of rinsing Water Basin in	
Surface Treatment Facility Lab (STF)	114

CHAPTER 5

RESULTS AND DISCUSION	119
5.1. Introduction	120
5.2. Wireless Maximum Range	120
5.2.1.Calculations of Signal Strength with Respect to Distance	120
5.3. System Energy Consumption	125
5.3.1.Energy consumption using Arduino board with Xbee Radi	io125
5.3.2.Energy Consumption using PIC16F877A Microcontroller	126
5.3.3.Experiment Results	128
CHAPTER 6	
SUMMARY AND FUTURE WORK	129
6.1. Introduction	130
6.2. Summary	130
6.2.1. Sensors Analysis	131
6.2.2. Microcontrollers Reliability	131
6.2.3. Wireless Ranges	132
6.2.4. Network Topology	132
6.2.5. Batteries Discharge Rates	133
6.2.6. Monitoring Application	134
6.3. Future Work	134
6.3.1. Environmental Monitoring System Integration	134
6.3.2. Active System Improvement	134
REFERENCES	135
APPENDIX A	137
APPENDIX B	149
الملخص العربي	180

List of Figures

Figure No.	Title Page
1-1	Common Methods of Water Quality Monitoring
1-2	Methodology Diagram of the Study
1-3	Water Stream Fully Equipped With Sensor Nodes
2-1	Sensor Network Used In Water Quality Monitoring10
2-2	Points of Discussion of Acoustic and Zigbee Sensor Networks11
2-3	Comparison of Li-Ion Technology to Other Battery Technologies 15
2-4	Illustrative Drawing of the Aqueous Sensor Network21
2-5	the Components of an Aqueous Sensor Node22
2-6	an Aqueous Sensor Network Node
2-7	IEEE 802 Space and Where the Zigbee Protocol Lies25
2-8	Zigbee layers
2-9	ZigBee pair, star, mesh, and cluster tree topologies28
2-10	Inverse Square Law
2-11	Block Diagram of Sensor Unit
2-12	Block Diagram of the Wireless Sensor Node36
2-13	Block Diagram Zigbee Based Wireless Sensor Network37
2-14	Status of the GUI Main Page
2-15	Voltage vs. Ti Graph (ISM-based)
2-16	Voltage vs. Time Graph (Zigbee-based, Sensor Node)43
2-17	Main Board Contains the Sensor Interfaces
2-18	Multi Sensor System46
3-1	Environmental Project Stages
3-2	Sensor Node Design and Base Station50
3-3	Materials Used In Each Stage53
3-4	Linearity of the Lm35 with the Celsius Degree Temperature54

Figure	e Title	Page
No.		
3-5	Lm35 Precise Temperature Sensor	55
3-6	Lm35 Mounted In a Metal Tub	55
3-7	DS18B20 Digital Temperature Sensor Pinouts	56
3-8	PIC16f877A Pinouts	59
3-9	Arduino Uno Board	62
3-10	Pinouts of Xbee Module	63
3-11	Xbee Antenna Types	66
3-12	X-Ctu Programs	67
4-1	Design Stages of the System	70
4-2	Screenshot for the Connection between DS18B20 Sensor	
	PIC16F877A Microcontroller and 2x16 LCD in Run Time Mo	de 73
4-3	PIC programmer used to Program the PIC microcontroller	74
4-4	Programming of PIC through PIC Programmer	75
4-5	Reading Room Temperature on an LCD Using Breadboard	75
4-6	Schematic Diagram of the Arduino with the DS18B20	
	Temperature Sensor and an LCD	77
4-7	Temperature Values on the LCD	77
4-8	Verification of Sensors Results With Pre-Calibrated	
	Temperature Module	78
4-9	Line Chart Showing Difference in Temperature Values	
	Between Three Sensors	79
4-10	Line Charts Of the Three Sensors under Different	
	Temperature Conditions	80
4-11	DS18B20 Waterproofed Sensor	81
4-12	Locally Assembled DS18B20 Sensor	81

Figure	Title Pa	age
No.		
4-13	Schematic Diagram of 2 DS18B20 Sensors Connected	
	To Arduino	.83
4-14	Bar chart of Sparkfun Sensor	.88
4-15	Bar chart of Local assembled Sensor	.88
4-16	Distribution of values for sparkfun and Assembled Sensors	.90
4-17	Identical multiple Observations with Respect to Range	.91
4-18	Response Time for Sparkfun Sensor & Assembled Sensor	94
4-19	Time duration of Sensors Steady State	.95
4-20	Time duration of Water Temperature Declining	96
4-21	Tables designed for saving/retrieving of data	.97
4-22	Assign Tables for Sensors Type and the Standard Type	.97
4-23	Sensors Location Table	.98
4-24	Sensors Information in the Database	.99
4-25	Experimental Values for Standards, Date/Time and User Name	.99
4-26	LM35 Sensor values saved in temp1 table in the experiment	
	Phase with username, sensor volts reading, date and time	100
4-27	Recording of the authorities' field	100
4-28	User authorities table	101
4-29	User Application Main Form	102
4-30	Monitoring Window in the Design Form	103
4-31	Simple Form Design for Adding New Sensors	104
4-32	Adding Of New Water Parameter Values in Database Tables	105
4-33	Saving Sensors with Water Parameters	105
4-34	Simplified Drawing of the Wireless Connection	107

Figure	Title Page
No.	
4-35	System Components; 2 xbee modules, xbee shield board,
	Xbee explorer board and the Arduino board
4-36	Open Waterproofed Sensor Node Box with Two
	Waterproofed Sensors
4-37	Sensors Node Box hanged indoors Reading Variation of
	Temperature values in the Validation Experiments of Sensor 110
4-38	The Xbee Chip Connected to PC receiving Data from Node 111
4-39	Line Chart of Day One of the DS18b20 and the RTD Sensors 115
4-40	Line Chart of Day Three of the DS18b20 and the RTD Sensors 116
4-41	Line Chart of Day Five of the ds18b20 and the RTD Sensors 117
5-1	Relation between Distance and Signal Strength in dBm for the
	Xbee Radios Series
5-2	Relation between Distance and Signal Strength in Power Density 12
5-3	Indoors Point to Point data transmission