Evaluation of the role of different Apolipoprotein-E genotypes in the outcome of liver disease caused by Hepatitis C virus

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

By

Ahmed Magdy Fath-Allah Mansour

MB.B.Ch. Ain Shams University, 2008

Under Supervision of

Prof. Dr. Mohammed A. M. Makhlouf

Professor of Internal Medicine and Gastroenterology Faculty of Medicine, Ain Shams University

Prof. Dr. Ehab Hasan Nashaat

Professor of Internal Medicine and Gastroenterology Faculty of Medicine, Ain Shams University

Assistant Prof. Dr. Moataz Mohammed Sayyed

Assistant Professor of Internal Medicine and Gastroenterology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2013

Acknowledgement

First of all, all thanks is to ALLAH for granting me the power and ability to finish this work, and for blessing me with his help all through my life.

I can hardly find the words to express my deep and sincere gratitude to Prof. Dr. Mohammed Aly Mar'y Makhlouf, Professor of Internal Medicine and Gastroenterology at Faculty of Medicine, Ain Shams University, for his kind supervision, continuous support, and great effort throughout this work.

Also, I'd like to express my great appreciation for Prof. Dr. Ihab Hasan Nashaat, Professor of Internal Medicine and Gastroenterology at Faculty of Medicine, Ain Shams University, for his guidance, sincere support and insightful comments during the production of this work.

I'm also indebted to Assistant Prof. Dr. Moataz Mohammed Sayyed, Assistant Professor of Internal Medicine and Gastroenterology at Faculty of Medicine, Ain Shams University for his enormous day-to-day effort, continuous support, sincere supervision and persistent encouragement throughout this study.

I wish also to thank Assistant Prof. Dr. Sarah Abu-Agwa, together with Dr. Marwa and Dr. Aya, and the rest of the team at Ain Shams University Medical Research Center, for their unbelievable effort, continuous support, and help in resolving any problems that faced this study.

I'd like to thank all my professors, colleagues, friends and anyone who helped by encouragement, support or even criticism, and to all our mentors who gave us their knowledge, skills and experience, and whom with their efforts we reached this moment.

Finally, I dedicate this work to all of my family, my father, my mother, my wonderful wife, and my cute little angel, Salma.

LIST OF CONTENTS

Title	Page
List of Abbreviations	II
List of Figures	VI
List of Tables	IX
Introduction	1
Aim of the Work	4
Review of Literature	5
Chapter 1: Natural History of Hepatitis C	5
Chapter 2: Molecular Pathogenesis of Hepatitis C	34
Chapter 3: Heterogenecity & Distribution of HCV	48
Chapter 4: Apolipoproteins	54
Subjects and Methods	77
Results	84
Discussion	103
Summary and Conclusion	110
Recommendations	112
References	113
Arabic Summary	1

LIST OF ABBREVIATIONS

AD Alzheimer's Disease

AFP Alpha-Fetoprotein

AIDS Acquired Immunodeficiency Syndrome

ALT Alanine Transaminase

ANOVA Analysis Of Variance

ASO Allele-Specific Oligonucleotides

AST Aspartate Transaminase

ApoE Apolipoprotein-E

Bp Base Pairs

BUN Blood Urea Nitrogen

CBC Complete Blood Count

CDC Centers for Disease Control and Prevention

CM Chylomicrons

CNS Central Nervous System

CVD Cardiovascular Disease

DNA Deoxyribonucleic acid

EDTA Ethylene-Diamine-Tetraacetic Acid

ELISA Enzyme-Linked Immunosorbant Assay

ER Endoplasmic Reticulum

ESLD End-Stage Liver Disease

Hb Hemoglobin

HBV Hepatitis B Virus

HCC Hepatocellular Carcinoma

HCV Hepatitis C Virus

HDL High Density Lipoproteins

HFL Hepatic Focal Lesion

HIV-1 Human Immunodeficiency Virus 1

HLA Human Leukocyte Antigen

HSPG Heparin Sulfate Proteoglycans

HSV Herpes Simplex Virus

HVAP-A Human VAMP-Associated Protein A

HVR1 Hypervariable Region 1

IDL Intermediate Density Lipoprotein

IL-2 Interleukin 2

iNOS Inducible Nitric Oxide Synthase

INR International Normalization Ratio

IRES Internal Ribosomal Entry Site

LDL Low Density Lipoproteins

LDLRs Low Density Lipoprotein Receptors

LRP LDL Receptor-Related Protein

LVP Lipo-Viro Particle

MELD Model of End-Stage Liver Disease

MPGN Membranoproliferative Glomerulonephritis

mRNA Messenger Ribonucleic Acid

NASH Non-Alcoholic Steatohepatitis

NHANES National Health and Nutrition Examination Survey

NIH National Institutes of Health in the United States

NS Non-Structural

OR Odds Ratio

PBMCs Peripheral Blood Mononuclear Cells

PBS Phosphate Buffer Saline

PCR Polymerase Chain Reaction

PLT Platelets

PT Prothrombin Time

PTT Partial Thromboplastin Time

RDRP RNA-Dependent RNA Polymerase

RNA Ribonucleic Acid

SD Standard Deviation

SPSS Statistical Package for Special Science

SR-BI Scavenger Receptor Class B Type I

SVR Sustained Viral Response

Tat Transactivator Protein

TGFβ1 Transforming Growth Factor β1

TLC Total Leukocytic Count

TNF-A Tumour Necrosis Factor A

UTR Untranslated Region

UV Ultraviolet

VAMP Vesicle-Associated Membrane Protein

VLDL Very Low Density Lipoproteins

LIST OF FIGURES

Fig. No.	Title	Page No.
1	Estimated HCV prevalence by region	6
2	Age-Specific prevalence of antibody to hepatitis C virus by selected countries	7
3	Natural History of HCV infection	18
4	HCV Structure	34
5	Genome organization of Hepatitis C virus	35
6	HCV Receptors	37
7	Internal Ribosomal Entry Site (IRES)	40
8	Ribbon diagram of the HCV RNA- dependent RNA polymerase	44
9	HCV life cycle	47
10	HCV worldwide distribution	50
11	Global HCV prevalence	52
12	Potential mechanisms of the impact of ApoE4 on viral treatment response, fibrosis progression in recurrent HCV infection	66
13	Potential mechanisms for ApoE4-mediated faster progression of HIV disease	72
14	Perkin-Elmer 9600 PCR Thermocycler	80
15	Gel Electrophoresis	81
16	Ultra-Violet (UV) Transillumination	82
17	HhaI-digested fragments on Polyacrylamide Gel, visualized by UV Transillumination	82

Fig.	Title	Page No.
18	Graph representation for age matching in the different study groups	84
19	Graph representation for sex matching in the different study groups	85
20	Graph representation for difference in ultrasonographic findings of the liver in the different study groups	86
21	Graph representation for difference in ultrasonographic findings of the spleen in the different study groups	87
22	Graph representation for difference in occurrence of hepatic encephalopathy in the different study groups	88
23	Graph representation for difference in occurrence of ascites in the different study groups	89
24	Graph representation for difference in total leukocytic count (TLC) between the different study groups	90
25	Graph representation for difference in hemoglobin level (Hb) between the different study groups	91

Fig.	Title	Page No.
26	Graph representation for difference in platelets count (Plt) between the different study groups	92
27	Graph representation for difference in serum ALT between the different study groups	93
28	Graph representation for difference in serum AST between the different study groups	94
29	Graph representation for difference in total bilirubin between the different study groups	95
30	Graph representation for difference in serum albumin between the different study groups	96
31	Graph representation for difference in prothrombin time (PT) between the different study groups	97
32	Graph representation for difference in international normalization ratio (INR) between the different study groups	98
33	Graph representation for difference in partial thromboplastin time (PTT) between the different study groups	99
34	Bar graph and Pi chart representation showing difference in prevalence of Apolipoprotein E (ApoE) genotypes between the different study groups	101

LIST OF TABLES

Table No.	Title	Page No.
1	Child-Pugh classification of severity of liver disease	29
2	ApoE isoform amino acid differences and resulting chemical and physiological changes	59
3	Estimated worldwide human allele frequencies of ApoE	61
4	Primers' sequences used in PCR	80
5	Statistical Comparison for age matching in the different study groups	84
6	Statistical Comparison for sex matching in the different study groups	85
7	Statistical Comparison for difference in ultrasonographic findings of the liver	86
8	Statistical Comparison for difference in ultrasonographic findings of the spleen in the different study groups	87
9	Statistical Comparison for difference in occurrence of hepatic encephalopathy in the different study groups	88

Table No.	Title	Page No.
10	Statistical Comparison for difference in occurrence of ascites in the different study groups	89
11	Statistical Comparison for difference in total leukocytic count (TLC) between the different study groups	90
12	Statistical Comparison for difference in hemoglobin level (Hb) between the different study groups	91
13	Statistical Comparison for difference in platelets count (Plt) between the different study groups	92
14	Statistical Comparison for difference in serum ALT between the different study groups	93
15	Statistical Comparison for difference in serum AST between the different study groups	94
16	Statistical Comparison for difference in total bilirubin between the different study groups	95
17	Statistical Comparison for difference in serum albumin between the different study groups	96

Table No.	Title	Page No.
18	Statistical Comparison for difference in prothrombin time (PT) between the different study groups	97
19	Statistical Comparison for difference in international normalization ratio (INR) between the different study groups	98
20	Statistical Comparison for difference in partial thromboplastin time (PTT) between the different study groups	99
21	Statistical Comparison showing difference in prevalence of Apolipoprotein E (ApoE) genotypes between the different study groups	100
22	Statistical comparison showing difference in serum total bilirubin level between patients with ApoE4 genotype and ApoE3 genotype (i.e. non-E4)	102
23	Statistical comparison showing difference in serum albumin level between patients with ApoE4 genotype and ApoE3 genotype (i.e. non-E4)	102
24	Statistical comparison showing difference in INR between patients with ApoE4 genotype and ApoE3 genotype (i.e. non-E4)	102

INTRODUCTION

Hepatitis C virus (HCV) infection is a major global health problem. More than 170 million people worldwide are infected with HCV (*Poynard et al.*, 2003, *Shepard et al.*, 2005, *Kamal and Nasser*, 2008). HCV is a causative agent of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC) (*Hishiki et al.*, 2010). In Egypt, HCV prevalence is ~15%, which is considered the highest prevalence worldwide, with genotype 4 being the most common, and responsible for 90% of HCV infections in Egypt (*Egyptian Ministry of Health*, 2007, *Kamal and Nasser*, 2008, *El-Zanaty and Ann Way.*, 2009).

There are several possible outcomes after infection with HCV (*Alter et al.*, 1992). Approximately 15% to 20% of infected individuals clear the virus, as evidenced by the presence of anti-HCV antibodies, but absence of viral RNA in serum. The remaining individuals (~85%) become chronically infected, with HCV RNA readily detectable in serum (*Seeff and Hoofnagle*, 2002).

The consequences of chronic infection also vary: some individuals develop minor or no liver damage, whereas others suffer from progressive chronic hepatitis, leading to liver cirrhosis, and even HCC. The reasons for the diversity of outcomes of HCV infection are still unclear.

At least 6 major HCV genotypes are identified (Robertson et al., 1998, NIH Consens State Sci Statements, 2002). However, infection with a particular genotype is not thought to influence disease outcome (Alric et al., 2000). Alternatively, host factors may be important. Some factors include male sex, an older age at

infection, increased alcohol intake, coinfection with Human Immunodeficiency Virus 1 (HIV-1) or Hepatitis B virus (HBV), and insulin resistance (Sanchez-Quijano et al., 1995, Poynard et al., 1997, Wiley et al., 1998, Zarski et al., 1998, Mohsen and the Trent HCV Study Group, 2001, Sud et al., 2004, Price et al., 2006).

HCV particles circulating in the blood of HCV carriers associate with lipoproteins, such as low-density lipoproteins (LDL), very low density lipoproteins (VLDL) and chylomicrons (CM); thus, it is termed a lipo-viro particle (LVP) (Andre et al., 2002, Nielsen et al., 2006, Hishiki et al., 2010).

It has been suggested that the virus might gain entry into cells via a hitchhiker method with the lipoproteins (Agnello V et al., 1999). Specifically, entry might involve LDL receptors (LDLRs) (Price et al., 2006). One of the trials that supported this theory was done using COS-7 cells, which are fibroblast-like cells derived from monkeys kidney tissue and used in production of different recombinant proteins. These cells were transfected with the human gene for LDLR, and were found to bind more HCV particles than untransfected cells. Another trial used antibodies that block binding of ligands to LDLRs, and it was found that they also block binding of HCV to cells (Monazahian M et al., 1999). The virus also has been shown to bind directly to certain apolipoproteins, which might facilitate entry (Depla E et al., 1998, Sabile A et al., 1999).

Several lipoproteins groups contain Apolipoprotein-E (ApoE), a polymorphic and multifunctional protein with numerous roles in lipoproteins metabolism. The three common isoforms: ApoE2, ApoE3 and ApoE4 show isoform-specific functional properties