

Cairo University Faculty of medicine Obstetrics and Gynecology Department

Evaluation of the role of follicular output rate (FORT) in the Prediction OF ICSI outcome

Thesis
Submitted for partial fulfillment of Master Degree
In Obstetrics and Gynecology

By

Hosam Eldeen Metwally Mohammed

M B., B.CH, 2002 Assuit University
Registrar of Ob/Gyn at Assuit maternity hospital

Supervised by

Prof. Magdy Ibrahim Mostafa

Professor of Obstetrics and Gynecology Faculty of Medicine - Cairo University

Dr. Abdelghany Mohamed Abdelghany

Lecturer of Obstetrics and Gynecology Faculty of Medicine - Cairo University

Dr. Ayman Hani Ahmed

Lecturer of Obstetrics and Gynecology Faculty of Medicine - Cairo University

> Faculty of medicine Cairo University

سورة البقرة الأية: ٣١

Thanks first and last to **ALLAH**, for his great care, support and guidance in every step in our life.

I would like to express my highest gratitude and thanks to **Prof.**Magdy Ihrahim Mostafa Professor of Obstetrics and Gynecology, Faculty of medicine - Cairo University, for giving me the privilege of working under his instructive and extremely helpful guidance. His generous and swift assistance was an example to follow.

I am truly indebted to **Dr. Abdelghany Mohamed Abdelghany**Lecturer of Obstetrics and Gynecology, Faculty of medicine - Cairo university, for his generous help and marvelous attitude in guiding and encouraging me & for his endless advices throughout the work.

I also wish to express my deep thanks to **Dr. Ayman Hani Ahmed**Lecturer of obstetrics and gynecology, Faculty of medicine - Cairo university, for his kind advice, constant supervision and meticulous revision of the study.

Hosam Eldeen Metwally Mohammed 2015

Abstract

Using FORT to determine ovarian responsiveness to exogenous FSH has some limitations. FORT does not take into account the doses of COH drugs. If two groups of women had the same AFC and PFC but needed different FSH doses, they will have the same FORT implying that they have the same oocytes quality; however we believe that women needing less FSH have better oocytes quality. The use of FORT in women with polycystic ovarian syndrome (PCO) is limited by the high number of AFC, Zhang et al have found that moderate, rather than higher FORT values were correlated with better IVF/ICSI outcome in PCOS patients.

Key words

Evaluation of the role of follicular output rate (FORT) in the Prediction OF ICSI outcome

List of Contents

Item	Page
• List of Tables	•••••
• List of Figures	•••••
• List of Abbreviations	• • • • • •
• Introduction	1
• Aim of work	3
• Review of literature	4
• Subjects and Methods	62
• Results	67
• Discussion	76
• Summary	81
• Conclusion	87
• References	88

• Arabic summary.....

List of Tables

Title	Page	
Table (1): Distribution of study population into three FORT	68	
groups:		
Table(2): Comparison between the three FORT groups regarding	69	
the age and BMI of patients	U)	
Table (3): Comparison between the three FORT groups regarding	69	
gravidity and parity		
Table(4): Comparison between the three FORT groups regarding	70	
causes, duration and type of infertility.	70	
Table(5): hmg doses in the three FORT groups	70	
Table(6): Comparison between the three fort groups in the number		
of retrieved oocytes ,MII oocytes , fertilized oocytes,	71	
fertilization rate, embryos obtained and grade 1 embryos		
Table(7): Comparison between the three FORT groups regarding	74	
pregnancy rate.	, -	

List of Figures

Title	Page
Figure (1): The 3 FORT groups according to no. of cases	68
Figure (2): Comparison between the three FORT groups as regard mean Retrieved oocytes	72
Figure (3) : Comparison betweenthe three FORT groups as regard the number of fertilized oocytes.	72
Figure (4) : Comparison between the three FORT groups as regard mean fertilization rate.	73
Figure (5) : Comparison between the three FORT groups as regard mean total number of embryos	73
Figure (6) : Comparison between the three FORT groups as regard mean number of excellent embryos.	74
Figure (7): Comparison between the three FORT groups regarding pregnancy rate	75

List of Abbreviations

Abb.	Full term
ACTH	Adreno-Corticotropic Hormone
AFC	Antral Follicle Count
AMH	Anti-Mullerian Hormone
ART	Assisted Reproductive Technology
ATPase	Adenosine Triphosphatase
BMI	Body Mass Index
СОН	Controlled Ovarian Hyperstimulation
DNA	Deoxy Ribonucleic Acid
E2	Estradiol
FORT	Folliular Output Rate
FSH	Follicle stimulating hormone
GnRH	Gonadotropin Releasing Hormone
GnRH-a	Gonadotropin Releasing Hormone agonist
GV	Germinal Vesicle
HCG	Human Chorionic Gonadotropin
hMG	Human Menopausal Gonadotropin
HOS	Hypo-Osmotic Swelling
ICSI	Intra- cytoplasmic Sperm Injection

IVF In Vitro Fertilization

IVF-ET In Vitro Fertilization-Embryo Transfer

LH Lutenizing Hormone

MESA Microsurgical Epididymal Sperm Aspiration

MI Metaphse I

MII Metaphase II

m-RNA messanger Ribonucleic Acid

OC Oral Contraceptives

OHSS Ovarian Hyperstimulation Syndrome

OR Ovarian Reserve

PCC Premature chromosomal condensation

PCO Polycystic Ovaries

PCOS Polycystic Ovary Syndrome

PFC Preovulatory Follicular Count

r-FSH recombinant Follicle Stimulating Hormone

ROSI Round Spermatid Injection

ROSNI Round Spermatid Nucleus Injection

r-RNA Ribosomal Ribonucleic Acid

SD Standard Deviation

TEM Transmission Electron Microscopy

TESE Testicular Sperm Extraction

TNF- a Tumor Necrosis Factor -a

TSH Thyroid Stimulating Hormone

t-RNA Transfer Ribonucleic Acid

u-FSH Urinary F ollicle Stimulating Hormone

Introduction

Infertility affects approximately 10 -15 % of couples and is an important part of practice in Gynecology. Assisted reproduction technology has gained increasing importance lately and ovarian stimulation is a key procedure in assisted reproduction technology.

Ovarian stimulation is achieved by administration of exogenous gonadotrophins to increase follicular recruitment and oocyte yields. Although the regulatory mechanisms determining the extent of the sensitivity of individual antral follicles to FSH remain to be elucidated. The appropriate response of antral follicles to FSH and a high quality of oocytes may result in a good outcome after IVF/intracytoplasmic sperm injection (ICSI) (Zhang et al., 2013).

There is no marker that can effectively predict both ovarian response and oocyte competence. The antral follicular count (AFC) comprises the number of follicles of 3–10 mm diameter measured in ovaries at the start of the menstrual cycle (*de Carvalho et al., 2008*). The AFC may reflect the size of the remaining primordial pool in women with proven natural fertility, and is highly correlated to the number of oocytes retrieved (*Broer et al., 2009*).

Otherwise, AFC can be used in the prediction of ovarian response but not of oocyte/embryo quality or IVF outcome. The

Introduction

number of preovulatory follicles (PFC) obtained at the end of ovarian stimulation is not a reliable reflection of antral follicle sensitivity to FSH, as it is greatly influenced by the number of small antral follicles available before treatment (*Melo et al.*, 2009).

To evaluate follicular responsiveness to exogenous FSH, the use of the follicular output rate (FORT) as an innovative measure has been suggested. FORT is assessed by the ratio of the preovulatory follicle count (PFC; 16–22mm) obtained in response to FSH administration on the day of human chorionic gonadotrophin (hCG) administration to the small antral follicle count (3–10 mm) (*Genro et al.*, 2011) observed after the complete suppression of endogenous gonadotrophins by gonadotrophin-releasing hormone agonist(GnRHa) . (FORT = PFCx100/AFC) (*Gallot et al.*, 2012).

Aim of work

To assess the accuracy of Follicular Output Rate (FORT) as a prognostic indicator of clinical pregnancy rate in women undergoing ICSI treatment.

The ovary

Although Leonardo Da Vinci (1452 — 1519) drew accurately the anatomy of the uterus and the ovaries, the major advances in anatomic knowledge can be traced to the University of Padua, the famed Italian university where a succession of anatomists made important contributions (*Motta et al.*, 1997).

Vesalius was the first to describe ovarian follicles and probably the corpus luteum. Fallopius (1523 - 1562), was remembered for his description of the fallopian tubes. Fabricuis (a student of fallopius who in turn a student of Vesalius) was the first one to name the female gonad ovary (*Motta et al.*, 1997).

De Graaf was the first to accurately describe the corpus luteum and the graafian follicle which was named after him.

The process of fertilization was described by Newport in 1853, bringing to a close the era of descriptive anatomy of the ovary and the beginning of scientific explorations into physiology and endocrinology (Gougeon, 1986).

The physiologic responsibilities of the ovary are the periodic release of gametes (eggs, oocytes) and the production of the steroid hormones (estradiol, progesterone). Both activities are integrated in the continuous repetitive process of follicle maturation, ovulation, and corpus luteum formation and regression (*Motta et al.*, 1997).

The ovary consists of three major portions: the outer cortex, the central medulla, and the retii ovary (the hilum). The hilum is the point of attachment of the ovary to the mesovarium. It contains nerves, blood vessels, and hilus cells. The outer most portion of the cortex is called tunica albuginea, topped on its surface by a single layer of cuboidal epithelum, referred to as the ovarian surface epithelium. The oocytes, enclosed in complexes called follicles, are in the inner part of the cortex (*Motta et al.*, 1997).

Stages of Development of ovary:

The ovary starts development as early as intra uterine passing through the following stages (fetal, neonatal, children, adult ovary).

1-The fetal ovary:

During fetal life, the development of the human ovary can be traced through four stages:

- a) The indifferent gonad stage
- b) The stage of differentiation
- c) The period of oogonal multiplication and oocyte formation, and finally
- d) The stage of follicle formation.

a) The Indifferent Gonad Stage

At approximately 5 weeks of gestation, the paired gonads are structurally consolidated coelomic prominences overlying the