

Optimal Phasor Measurement Unit (PMU) Placement for Full Power System Observability

By

Eng. Reham Hosny Salem Mansour

A Thesis Submitted for the Requirement of the Degree of Master of Sciences in Electrical Power Engineering

Supervised by

Prof. Dr. Almoataz Youssef Abdelaziz

Dr. Amr Mohamed Ibrahim

Cairo 2013

Supervisors Committee

Name, Title and Affiliation

Signature

- Prof. Dr. A. Y. Abdelaziz
 Electrical Power and Machines Dept.
 Faculty of Engineering,
 Ain Shams University
- 2. Dr. A. M. Ibrahim
 Electrical Power and Machines Dept.
 Faculty of Engineering,
 Ain Shams University

Examiners Committee

Name, Title and Affiliation

Signature

- Prof. Dr. Nabil Hasan Abbasy Electrical Engineering Dept. Faculty of Engineering, Alexandria University
- Prof. Dr. Abla Soliman Attia
 Electrical Power and Machines Dept.

 Faculty of Engineering,
 Ain Shams University
- 3. Prof. Dr. A. Y. Abdelaziz
 Electrical Power and Machines Dept.
 Faculty of Engineering
 Ain Shams University

Statement

This dissertation is submitted to Ain Shams University in partial fulfillment of the requirements for the degree of Master of Sciences in Electrical Engineering.

The work included in the thesis was carried out by the author at the department of Electrical Power and Machines, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name: Reham Hosny Salem Mansour

Signature:

Date:

Acknowledgement

I would like to thank **Prof. Dr. Almoataz Youssef Abdelaziz**, one of my two thesis supervisors, for his invaluable directions, and supervision work, his wise advice, his patience and for allowing me the opportunity to develop this work.

I am greatly indebted to him, for his guidance, support, suggestions, encouragement and reviewing the drafts of the thesis and the time he offered me during supervision, without which this thesis would not has been possible.

Also, I would like to thank **Dr. Amr Mohamed Ibrahim**, my other thesis supervisor, for the guidance and advices during the research and for his continuous patience in reviewing the drafts during the preparation of this thesis

Special thanks to my parents; my friend, Zeinab; and my family for their endless support in my endeavors. The enrollment and pursuance of graduate studies would have been impossible without their continuous encouragement and motivation throughout the years.

Thanks for supporting me in this journey....

From bottom of my heart I wish to thank my mother, for her endless love, support and understanding.

Special thanks to all my friends

Finally, but certainly not least, I would like to thank Allah for giving me the opportunity of being the person that I am and for giving me the strength of developing personal and spiritually.

Table of Contents

LIST	Γ OF ABBREVIATIONS	IX
ABS	STRACT	ΧI
CHA	APTER (1): INTRODUCTION	1
1.1	Background	1
1.2	Motivations	4
1.3	Objectives	6
1.4	Thesis Outline	6
CHA	APTER (2): LITERATURE REVIEW	8
2.1	Introduction	8
2.2	Operating States of a Power System	9
2.3	Static Security Assessment	10
2.4	Fundamentals of PMUs	12
2.5	Phasor Measurement Concepts	13
2.6	Synchrophasor Definition and Measurements	14
2.7	Outlooks of PMUs	15
2.8	The Global Positioning Satellite (GPS) Systems	15
2.9	Main Strategy of PMU Placement Based on Power Systems Intrinsic Characterstics	
2.10	The Comparisons Between SCADA System and PMUs System	18
2.11	PMU Applications	18

2.12	State Estimation in Power System	22
2.13	PMU Placement Techniques	25
2.14	Contingency Analysis Using Phasor Measurements	28
	CHAPTER (3): OPTIMAL PMU PLACEMENT PROBLEM	
FOI	RMULATION	.30
3.1	Introduction	30
3.2	Observability Problem	31
3.3	PMU Placement Problem	36
	CHAPTER (4): PHASOR MEASUREMENT UNIT(PMU) PLACEME	NT
TE(CHNIQUES	.53
4.1	Introduction	53
4.2	Optimal PMU Placement in Normal Conditions	54
4.3	Simulation Results and Analysis	62
4.4	Optimal PMU Placement in Contingency Condition	71
4.5	Results of N-1 Algorithms for Different Test Systems	75
	CHAPTED (E), OPTIMAL DMILDIACEMENT FOR COMPLETE	
OB:	CHAPTER (5): OPTIMAL PMU PLACEMENT FOR COMPLETE SERVABILITY USING HEURISTIC METHODS	.78
5.1	Introduction	78
5.2	Optimization Problems	79
5.3	Heuristic Optimization	79
5.4	Simulation Results and Analysis	83

	Comparative Study between The Proposed Heuristic Methods and Previous nods	87
FUF	CHAPTER (6): CONCLUSIONS AND RECOMMENDATIONS FOR RTHER RESEARCH	.89
6.1	Summary and Conclusions	89
6.2	Main Contribution of this Work	91
6.3	Suggestion for the Further Research	92
REF	FERENCES	.93
LIS	T OF PUBLICATIONS1	02

List of tables

TABLE 2.1 COMPARISON BETWEEN SCADA SYSTEM AND PMU SYSTEMS	.18
TABLE 4.1 RADIAL AND ZERO INJECTION BUSES FOR THE TEST SYSTEMS	.64
TABLE 4.2 RESULTS OF IEEE 14 BUS TEST SYSTEM	.65
TABLE 4.3 RESULTS OF NEW ENGLAND 39 BUS TEST SYSTEM	.65
TABLE 4.4 RESULTS OF IEEE 118 BUS TEST SYSTEM	.66
TABLE 4.5 MINIMUM NUMBER OF PMUs FOR COMPLETE POWER SYSTEM	
OBSERVABILITY	.68
TABLE 4.6 COMPARISON BETWEEN THE THREE ALGORITHMS	.70
TABLE 4.7 COMPARISON OF TOTAL NUMBER OF PMUs OBTAINED BY SEVERAL Methods	.70
TABLE 4.8 RESULTS OF RECURSIVE N-1 ALGORITHM	.75
TABLE 4.9 RESULTS OF SINGLE SHOT N-1 SECURITY ALGORITHM	.76
TABLE 5.1 PMUs PLACEMENT FOR THE TEST SYSTEMS	.85
TABLE 5.2 PMUs PLACEMENT FOR THE TEST SYSTEMS CONSIDERING ZERO	
INJECTION EFFECT	.85
TABLE 5.3 COMPARISON OF TOTAL NUMBER OF PMUs OBTAINED BY SEVERAL	
METHODS	.87

List of Figures

Fig.2.1: Phasor representation of a sinuusoidal signal	13
Fig.2.2: Compensating for signal delay introduced by the antialiasing filter	15
Fig.2.3: Block digram of the phasor measurement unit	16
Fig.2.4 PMU utilization in a power system	17
Fig.3.1: Example of the first observability rule	33
Fig.3.2: Example of the second observability rule	34
Fig.3.3: Example of the third observability rule	35
Fig.3.4: IEEE 14 bus system	38
Fig.3.5: Zero injection case	43
Fig.3.6:Six bus system	44
Fig.3.7: System diagram after the merging of buses 7 and 8	48
Fig.3.8: Flowchart of topological observabilty analysis	51
Fig.4.1: Flowchart of SA method	59
Fig.4.2: Flowchart of MST method	60
Fig.4.3: Search of alternative placement sets	61
Fig.4.4: Pure transit node filtering	61

Fig.4.5: IEEE14 bus system62
Fig.4.6: New - England 39 bus system63
rig.4.0. New - Eligianu 39 bus system
Fig. 4.7: IEEE 118 bus system64
Fig. 4.8: Summary of results of three algorithms67
Fig.4.9: PMU placement with an N-1 criterion(a)if line A-B is lost (b) if line C-D is lost
7.
Fig.4.10: Recursive N-1 security method73
Fig. 4.11: Single shot N-1 security method74
Fig.4.12: Summary of results of N-1 algorithms(a)76
Fig.5.1: Flowchart of greedy algorithm82
Fig. 5.2: Flowchart of single vertex algorithm83
Fig. 5.3: West delta network84
Fig. 5.4: IEEE 14 bus single vertex algorithm86

List of Abbreviations

PMU Phasor Measurement Unit

GPS Global Positioning System

OPP Optimal PMU Placement

AI Artificial Intelligence

DFS Depth First Search

SA Simulated Annealing

MST Minimum Spanning Tree

RTU Remote Terminal Unit

WDN West Delta Network

MIWO Modified Invasive Weed Optimization

PPA PageRank Placement Algorithm

DE Distributed Evolution

ILS Iterated Local Search

ES Expert systems

GA Genetic Algorithms

ITS Improved Tabu Search

KCL Kirchhoff's Current Law

KVL Kirchhoff's Voltage Law

MPSO Modified Particle Swarm Optimization

MTS Modified Tabu Search

IP Integer Programming

PSO Particle Swarm Optimization

SA Simulated Annealing

SCADA Supervisory Control and Data Acquisition

TS Tabu Search

Abstract

In recent years, Phasor Measurement Units (PMUs) have been widely acknowledged as one of the most promising developments in the field of real-time monitoring of electric power systems.

An essential tool for power system monitoring is state estimation. Phasor Measurement Units (PMUs) can greatly improve the state estimation process. However, for state estimation, the PMUs should be placed appropriately in the network. The problem of optimal PMU placement for full observability is adressed in this thesis.

The thesis adopts minimization the size of the PMU configuration while allowing full observability of the network. At first, three algorithms; Depth First Search (DFS), Simulated Annealing (SA) and Minimum Spanning Tree (MST) Algorithms are introduced as well as their differences and relations are discussed in detail. The applied optimal PMU placement methodologies included the system observability during normal operating conditions, as well as during single branch forced outages in order to obtain a reliable measurement system.

To verify the effectiveness of the introduced algorithms, comparative studies are conducted on three test systems with encouraging results. A 14-bus, 39-bus and 118-bus electrical distribution systems are selected for optimizing the configuration to minimize the number of PMUs. The effect of zero injection buses is taken into consideration as well.

The thesis also adopts two new efficient heuristic techniques for optimal PMU placement.

Greedy algorithm and Single Vertex Algorithm are used as an optimization tool to obtain the minimal number of PMUs and their corresponding locations while satisfying associated constraints.

Applications of the proposed optimization algorithms are applied to the IEEE 14-bus test system as a standard system and to two real systems customized from the British and Egyptian networks with different scales,

topologies and voltage levels, to demonstrate the effectiveness of the proposed approaches.

The obtained results, using the presented approaches, are compared with the results of other approaches from literature to examine the performance. However, the two algorithms require shorter simulation time but more practice of the iterative process than the other methods. The difference in time is more significant as the system size increases. In comparison with previously applied algorithms, the introduced algorithms outperform purely heuristic as well as various AI-based algorithms such as Tabu Search (TS) and Simulated Annealing (SA) in finding the optimal PMU placement to guarantee the complete power system observability.

Keywords: Phasor Measurement Unit (PMU); Observability; Greedy algorithm; Single Vertex Algorithm; Depth First Search; Simulated Annealing Method; Minimum Spanning Tree; Optimal PMU Placement (OPP).