

Endothelial Keratoplasty

Essay

Submitted for Partial Fulfillment of Master Degree of Ophthalmology

By

Gina Gamil Aziz Gaballa

M. B., B.Ch. Ain Shams University

Under the supervision of

Prof. Dr. Sheriff Elwan

Professor of Ophthalmology Faculty of Medicine Ain Shams University

Dr. Karim Magdy

Lecturer of Ophthalmology Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2013

الترقيع الطلائى الخلفى للقرنية

بروتوكول رسالة توطئة تمهيدا للحصول علي درجة الماجستير في طب و جراحة العيون

مقدمة من طبيبة/ جينا جميل عزيز بكالوريوس الطب والجراحة

تحتاشراف أد شريف علوان

أستاذ طب وجراحة العيون كلية الطب -جامعة عين شمس

د کریم مجدی

مدرس طب و جراحة العيون كلية الطب -جامعة عين شمس

> كلية الطب جامعة عين شمس 2013

Acknowledgement

I would like to express my deepest gratitude & appreciation to *Prof Dr Sheriff Elwan*, *Professor of Ophthalmology*, *Faculty of Medicine*, *Ain Shams University*, who supervised this essay& provided me with the finest details & rules. Also he taught me how to listen & respect the small points before the big ones. It's a great honor to work under his guidance& supervision.

My deep gratitude goes to *Dr Karim Magdy*, *Lecturer* of *Ophthalmology*, *Faculty of Medicine*, *Ain Shams University* for his effort & updated knowledge. He taught me how to collect scientific data from different books and papers.

Special words are for my lovely family (my *Mother*, my *husband* and my *sisters*) for their support, love, care & encouragement whom without, I could not finish this essay.

Gina Gamil Aziz

List of Contents

Topic:	Page
➤ List Of Contents.	i
➤ List Of Abbreviations.	ii
➤ List Of Figures.	iv
> Introduction.	1
Chapter One:Definitions.	3
Chapter Two:Indications of Endothelial Keratoplasty.	8
Chapter Three:- Different Techniques of Endothelial Keratoplasty.	15
Chapter Four:Complications of Endothelial Keratoplasty.	41
Chapter Five:Future.	57
> References.	64
> Summary.	79
> Arabic Summary.	

List of Abbreviations

AAC	Artificial Anterior Chamber
ABK	Aphakic Bullous Keratopathy
ALK, ALKP	Anterior Lamellar Keratoplasty
PLKP	Posterior Lamellar Keratoplasty
BCVA	Best Corrected Visual Acuity
BSS	Balance Salt Solution
CDB	Chemically Defined Bioadhesive
CMV	Cytomegalovirus_
DALK	Deep Anterior lamellar Keratoplasty
DLEK	Deep Lamellar Endothelial Keratoplasty
DM	Descemet's Membrane
DMEK	Descemet's Membane Endothelial Keratoplasty
DSAEK	Descemet's Stripping Automated Endothelial Keratoplasty
DSEK	Descemet's Stripping Endothelial Keratoplasty
DXEK	Descemetorhexis and Endothelial Keratoplasty
DX	Descemetorhexis

List Of Abbreviations

ECD	Endothelial Cell Density
EK	Endothelial Keratoplasty
FS	Femtosecond
ICE	Iridocorneal Endothelial Syndrome
ICG	Indocyanine green
IOL	Intra Ocular Lens
LASIK	Laser Insitu keratomiluesis
LKP, LK	Lamellar Keratoplasty
μ	Micron
mm	Millimeters
mm ²	Cubic millimeters
PBK	Pseudophakic Bullous Keratopat
PGF	Primary Graft Failure
PLK	Posterior Lamellar Keratoplasty
PKP, PK	Penetrating Keratoplasty
PPMD	Posterior Polymorphous Corneal Dystrophy
Tencell	True Endothelial Cell Transplantation

List of Figures

Figure:	Page
Figure (1): Anatomy of the cornea.	4
Figure (2): Various shapes of keratoplasty.	7
Figure (3): The left eye of a 75-year-old man showing fully	9
developed Fuchs endothelial dystrophy and Bullae formation is	
seen on the nasal side.	
Figure (4): Fuchs endothelial dystrophy. The apparently empty	10
spaces are occupied by guttate.	
Figure (5): Pseudophakic bullous keratopathy	11
Figure (6): Slit lamp image demonstrates posterior corneal vesicles	12
and opacities in linear bands and other polymorphous	
configurations typical of posterior polymorphous corneal	
dystrophy.	
Figure (7): Specular microscopy revealed a "hammered-silver"	13
appearance of the posterior corneal surface.	
Figure (8): The impact of corneal allograft rejection on the long-	14
term outcome of corneal transplantation Posterior graft rejection	
with keratic precipitates and haze.	
Figure (9): Devers-Terry Straight or curved Dissector:.	16
Figure (10): Terry Trephine with Guard.	17
Figure (11): Bausch and Lomb AAC.	18
Figure (12): Ousley Implant Spatula.	18
Figure (13): Diagram of Posterior lamellar Keratoplasty procedure	19
performed through a sclera – corneal pocket	
Figure (14): Surgical steps for small-incision deep lamellar	21
endothelial keratoplasty (DLEK).	
Figure (15): A diagram of a patient's cornea is shown following	24
Descemet's stripping automated endothelial keratoplasty.	

List Of Figures

Figure:	Page
Figure (16): Diagram of microkeratome -assisted posterior lamellar	25
keratoplasty procedure in which a donor lenticule is sutured into a	
trephinated opening in the bed of an edematous cornea under a	
microkeratome created anterior flap.	
Figure (17): Conceptual diagram of microkeratome -assisted	26
posterior lamellar keratoplasty at the end of procedure.	
Figure (18): Surgical steps of Endokeratoplasty.	27
Figure (19): An irrigating Descemet's stripper scores Descemet's	29
membrane 9 mm around.	
Figure (20) : Counterclockwise descemetorhexis 360° without	29
exiting the anterior chamber.	ı
Figure (21): A: Gorovoy Goosey Donor Lamellar Inserting	31
Forceps.	
B: DSEK lenticule is shown folded in preparation for insertion.	l
Figure. (22): method of inserting the donor lenticula without	
forceps using a traction suture.	32
Figure (23): DSAEK Busin Glide Spatula: For insertion of the donor	34
lamellar button	ı
Figure (24): The corneal surface is massaged with a LASIK flap	35
roller.	l
Figure (25): Descemet's stripping endothelial keratoplasty	36
technique using precut tissue:	l
Figure (26): Light microscopy of a Descemet membrane transplant	44
explanted three weeks after DMEK.	l
Figure (27): Slit-lamp images of a cornea two months after DMEK.	44
Figure (28) A: Normal cannula can push the donor tissue away	48
from the host cornea during aspiration of the interface fluid.	ı
B: Ide DSAEK cannula with stopper. This can prevent pushing the	ı
tissue away with the stopper	ı
C: Image captured from surgical video. The instrument allowed	ı
surgeons to aspirate as much fluid as possible from the host-and-	
donor corneal interface.	İ

List Of Figures

Figure:	Page
Figure (29): CMV endotheliitis in a patient after DSAEK.	53
Figure (30): Slit-lamp photograph showing diffuse keratic	54
precipitates in the asymptomatic right eye of a patient with bilateral	
rejection.	
Figure (31): A: Slit-lamp photograph illustrating diffuse corneal oedema without visible keratic precipitates.	56
B: Slit-lamp photograph taken 1 week after the diagnosis of rejection, showing diffuse keratic precipitates with residual oedem. C: Slit-lamp photograph, taken 3 weeks after the diagnosis of	
rejection, showing residual keratic precipitates with complete	
resolution of corneal oedema.	
Figure (32): Femtosecond Laser (Femtec femtosecond laser workstation).	58
Figure (33): Schematic diagram illustrating femtosecond laser-	59
assisted DLEK.	
Figure (34): A: Schematic cross-sectional view of lamellar and trephination cuts (solid red lines) in laser-assisted DLEK B: Cross-sectional histologic specimen of femtosecond laser trephination edge (*), lamellar cut, and side pocket (black arrows). C: Scanning electron micrograph of lamellar interface and cross-sectional edge of trephination cut (*) in DLEK.	61
Figure (35): In-vivo post-DLEK clinical appearance of cornea in	62
rabbit at Left. One month. Right. Six months.	

INTRODUCTION

Corneal transplantation has been used to treat visual loss due to corneal disease for over 100 years, with the first successful full-thickness human transplant performed in 1905. It has advanced dramatically over the past 25 years due to better surgical techniques, medications, and donor storage advances. ²

Penetrating Keratoplasty is an indiscriminate form of surgery, as it replaces all layers of the cornea, regardless of the tissue layer that is responsible for the visual deficit. For example: In the case of anterior stromal scars with healthy endothelium, a Penetrating Keratoplasty removes the scar but sacrifices the healthy endothelium. In the case of endothelial dysfunction due to disease or trauma, Penetrating Keratoplasty replaces the endothelium with healthy tissue, but sacrifices the normal corneal topography and also the structural integrity of the anterior corneal tissues. ³

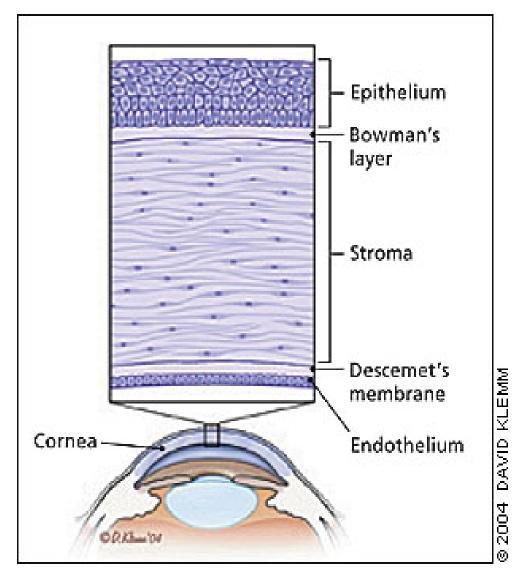
Endothelial keratoplasty is the selective replacement of diseased endothelium with healthy donor endothelium. First performed in humans in 1998 by Garret Melles, the procedure involved the removal of the endothelium and posterior stroma from a recipient cornea and replacement with a similarly sized donor stroma and endothelial tissue. Dr. Melles termed the procedure posterior lamellar keratoplasty.³

In March 2005, Terry MA modified the procedure, terming it deep lamellar endothelial keratoplasty (DLEK) and performed the first endothelial keratoplasty surgery in the United States.⁴

Dr. Melles proposed that stripping Descemet's membrane from the back of the recipient cornea would more easily remove the recipient endothelium (compared with cutting out the posterior stromal tissue) and would result in a smoother recipient interface surface. This modification has been popularized as Descemet's stripping endothelial keratoplasty (DSEK).⁵

In order to compare techniques of endothelial replacement surgery, it is worthy to consider what the ideal goals of endothelial transplant surgery should be. The ideal endothelial transplantation procedure should fulfill, six goals:

- (1) An optically pure cornea.
- (2) A highly predictable and stable corneal power.
- (3) A healthy donor endothelium that resolves all edema.
- (4) A tectonically stable globe, safe from injury and infection.
- (5) A surgical technique that is quickly and easily acquired.
- (6) A smooth surface topography without significant change in astigmatism from preoperative to postoperative status.⁶


CHAPTER ONE Definitions

General Background

The cornea, a clear dome-shaped membrane that covers the front of the eye, is a key refractive element of the eye. Layers of the cornea consist of the epithelium (outermost layer); Bowman's layer; the stroma, which comprises approximately 90% of the cornea; Descemet's membrane; and the endothelium. The endothelium removes fluid from the stroma and limits its entry, thereby maintaining the ordered arrangement of collagen and preserving the cornea's transparency **Figure (1)**. For optimal vision, all layers of the cornea must be of normal shape and curvature and free of any cloudy or opaque areas.⁷

Indications for corneal transplant include corneal dystrophies and degenerations (e.g., keratoconus, Fuch's dystrophy), bullous keratopathy, and failure of a prior corneal transplant. Scarring from infection or trauma may also cause corneal changes that may require surgical intervention. While some corneal damage can be treated by performing corrective surgery on the surface of the cornea, more often vision can only be restored only with a corneal transplant. Corneal transplant or keratoplasty is the surgical replacement of a diseased or scarred cornea. Corneal tissue used for transplant surgery is typically donated through a certified eye bank and undergoes extensive testing prior to use for transplantation. Since the cornea normally contains no blood vessels, this type of transplant is associated with a low rejection

rate. Generally blood and tissue typing are not needed in corneal transplants. 8

Figure (1): Anatomy of the cornea the cornea has five distinct, transparent layers; from anterior to posterior they are epithelium, Bowman's layer, stroma, Descemet's membrane, and endothelium. ⁹

Penetrating Keratoplasty (PK):

Penetrating keratoplasty is a procedure consisting of full-thickness replacement of the cornea. ¹⁰ It is indicated for full-thickness corneal disease. ¹¹

Lamellar (Non-Penetrating) Keratoplasty:

Lamellar or non-penetrating keratoplasty is a corneal transplant procedure in which a partial thickness of the cornea is removed. The diseased tissue is replaced with a partial-thickness donor cornea.¹²

Deep anterior lamellar keratoplasty (DALK):

DALK is used when the pathology is confined to front layers of the cornea. In this procedure, most of the anterior layers of the cornea (i.e., epithelium, Bowman's membrane, stroma) are removed.¹²

Posterior lamellar keratoplasty (PLK)

The PLK is defined as any corneal lamellar procedure where the Descemet's membrane and endothelium are excised with or without host corneal stroma. It includes Deep lamellar keratoplasty (DLKP), Descemet's membrane endothelial keratoplasty (DMEK) and Descemet stripping with endothelial keratoplasty (DSEK). Microkeratome could be used to prepare the donor tissue in DSEK surgery in this case the procedure is "Descemet's endothelial termed stripping automated keratoplasty" (DSAEK) or by Femtosecond-laser (Femto-PLK). 13

Deep lamellar keratoplasty (DLKP):

DLKP is a surgical method that completely removes pathological corneal stromal tissue down to the endothelium, followed by transplantation of donor tissue. The technique was modified with redesigned instrumentation, and renamed deep lamellar endothelial keratoplasty (DLEK).¹⁴

<u>Descemet's membrane endothelial keratoplasty</u> (DMEK):

In 1998, a technique for selective transplantation of Descemet's membrane through a self-sealing 3.5 mm clear corneal incision named Descemet's membrane endothelial keratoplasty (DMEK).¹⁵

Descemet's stripping endothelial keratoplasty (DSEK):

DSEK involves the scraping of the Descemet's membrane from the recipient cornea instead of the lamellar dissection and excision procedures performed in DLKP and DLEK. DSEK is also less technically challenging than DLEK.¹⁴

Descemet's stripping automated endothelial keratoplasty (DSAEK):

When the donor tissue is prepared with a microkeratome instead of manually, the procedure is termed Descemet's stripping automated endothelial keratoplasty (DSAEK), and this method is currently the preferred technique. The popularity of EK has