Role of IL-6 in the Pathogenesis of Type 2 Diabetes Mellitus

Thesis

Submitted for the Partial Fulfillment of Masters Degree (MSc) in Clinical and Chemical Pathology

Tresented by

Riham El Sayed Hanafy

(M. B. B. Ch.)

Supervised by

Prof. Dr. Sara Mahmoud El Kateb

Professor of Clinical and Chemical Pathology Faculty of Medicine, Cairo University

Dr. Marianne Samir Makboul

Dr. Reham Assem Zeyada

Lecturer of Clinical and Chemical Pathology Faculty of Medicine, Cairo University Lecturer of Clinical and Chemical Pathology Faculty of Medicine, Cairo University

Faculty of Medicine
Cairo University
2008

Acknowledgment

First and utmost, I would like to thank GOD for granting me the power, patience and health to finish this work.

I am greatly honored to express my deepest thanks, gratitude and respect to my mentor, **Prof. Dr. Sara El Kateb**, for her kind guidance, supervision, advice, and mostly for giving me some of her precious time. It has been an honor to learn from her experience and wise counseling.

I am also deeply thankful to **Dr. Marianne Samir**, lecturer of Chemical Pathology, for her great help and meticulous remarks. No words can express the effort she has exerted with me and the patience she had during the hard times of the practical work. Many thanks for her care and keen supervision throughout the study.

My heartfelt thanks go to **Dr. Reham Zeyada**, lecturer of Chemical Pathology, for helping me throughout the study, guiding me to finish this work and simplifying and clarifying matters for me. I would like to thank her for her exceptional effort and for her patience with me. Not only that, but I am also very keen on expressing my appreciation for the psychological support she continues to give me and for her never ending guidance to me throughout the period of my residency and up till now.

I would also like to thank Assist. Prof. Dr. Dina El Gayar for her great help and effort in the statistical analysis of this study.

Moreover, I would like to extend my appreciation to my family and fiancé for tolerating with me through the times of hard work.

And finally, thank you to everyone who has helped me bring this study to light.

"No one is as blind as those who have sight without vision." -Helen Keller,

To those who were to me what Anne Sullivan was to Helen Keller,

For showing me the right path,

For never giving up, and for teaching me never to give up,

And most of all,

For helping me become a better human being:

Thank you.

And,

To my family and my fiancé

For all that, and more

Abstract

There has been growing evidence that low grade activation of the immune system plays a role in the pathogenesis of insulin resistance and type 2 diabetes mellitus. This study is based on the hypothesis that a single nucleotide polymorphism in the promoter region of Interleukin-6 gene influences its transcription and thus affects plasma level of Interleukin-6. This will in turn lead to insulin resistance and consequently type 2 diabetes.

This study was carried out in Kasr Al-Ainy Hospital on 60 subjects: 30 known diabetic patients (15 obese and 15 lean) and 30 non-diabetic subjects (15 obese and 15 lean).

In the current study, serum level of Interleukin-6 was assayed by enzyme chemiluminescence and -174 G/C gene polymorphism was detected by PCR-RFLP.

Serum level of IL-6 was found to be high in the obese group, both diabetic and non-diabetic and in the lean diabetic group. As for IL-6 genotyping, we found that 58% of the obese carrying the GG genotype developed type 2 diabetes versus 38% of those carrying the C allele. Therefore, this might suggest a protective role for the C allele in the presence of obesity.

Key words: Interleukin-6, Chemiluminescence, -174 G/C polymorphism, PCR-RFLP, Insulin Resistance.

CONTENTS

	Pages
INTRODUCTION AND AIM OF THE STUDY	1
REVIEW OF LITERATURE	
Type 2 diabetes: An Overview	3
• Obesity	16
Insulin Resistance	33
• Interleukin-6	44
SUBJECTS AND METHODS	63
RESULTS	86
DISCUSSION	104
SUMMARY AND CONCLUSION	117
REFERENCES	120
ARABIC SUMMARY	

LIST OF TABLES

No. of Table	Title	No. of Page
1.	Weight categories	18
2.	PCR reaction mixture	78
3.	Gender Differentiation among the 4 groups	87
4.	Age and physical characteristics of the 4 groups	88
5.	A comparative study of biochemical findings of the 4 groups	89
6.	Median values of serum level of IL-6 of obese diabetic and lean diabetic	92
7.	Median values of serum level of IL-6 of obese diabetic and obese non-diabetic	93
8.	Median values of serum level of IL-6 of obese diabetic and lean non-diabetic	94
9.	Median values of serum level of IL-6 of lean diabetic and obese non-diabetic	95
10.	Median values of serum level of IL-6 of lean diabetic and lean non-diabetic	96
11.	Median values of serum level of IL-6 of obese non-diabetic and lean non-diabetic	97
12.	Genotype distribution among all tested subjects	98
13.	Comparisons between the 4 groups concerning median values of serum IL-6	99
14.	A comparative study between the 3 genotypes concerning median values of serum level of IL-6 in all 4 groups	100

No. of Table	Title	No. of Page
15.	Physical and biochemical findings of obese diabetic and lean diabetic groups	101
16.	Physical and biochemical findings of obese non-diabetic and lean non-diabetic groups	102
17.	IL-6 serum level and IL-6 gene polymorphism in the 4 groups	103

LIST OF FIGURES

No. of Figure	Title	No. of Page
1.	Android obesity in a male	19
2.	Gynecoid obesity in a female	20
3.	Possible roles of NEFAs in the pathogenesis of insulin resistance in obesity	29
4.	Normal actions of insulin	34
5.	Cellular basis of insulin	35
6.	Human IL-6 crystal structure	48
7.	Human IL-6 gene structure	48
8.	Actions of IL-6	52
9.	Sandwich ELISA technique	57
10.	RFLP technique	59
11.	SSCP technique	60
12.	DNA Sequencing technique	61
13.	Real-Time PCR technique	62
14.	IMMULITE chemiluminescent immunometric assay	65
15.	QIAamp Spin procedure	76
16.	PCR-RFLP analysis of IL-6 -174 G/C polymorphism	84
17.	Gender Differentiation among the 4 groups	87

No. of Figure	Title	No. of Page
18.	A comparative study of lipid profiles between the 4 groups	91
19.	A comparative study of liver enzymes between the 4 groups	91
20.	Median values of serum level of IL-6 of obese diabetic and lean diabetic	92
21.	Median values of serum level of IL-6 of obese diabetic and obese non-diabetic	93
22.	Median values of serum level of IL-6 of obese diabetic and lean non-diabetic	94
23.	Median values of serum level of IL-6 of lean diabetic and obese non-diabetic	95
24.	Median values of serum level of IL-6 of lean diabetic and lean non-diabetic	96
25.	Median values of serum level of IL-6 of obese non-diabetic and lean non-diabetic	97
26.	Genotype distribution among all tested subjects	98
27.	A comparative study between the 3 genotypes concerning median values of serum level of IL-6 in all 4 groups	100

LIST OF ABBREVIATIONS

ADA American Diabetes Association

ALT Alanine Aminotransferase

AST Aspartate Aminotransferase

BMI Body Mass Index

CABG Coronary Artery Bypass Graft

cAMP cyclic Adenosine Monophosphate

CETP Cholesterol Ester Transfer Protein

ddNTPs dideoxynucleotides

dNTPs deoxynucleotides

ELISA Enzyme-Linked Immunosorbent Assay

FFAs Free Fatty Acids

GK Glycerol Kinase

GLDH Glutamate Dehydrogenase

GLUT Glucose Transporter

GPO Glycerol Phosphate Oxidase

HDL High Density Lipoprotein

HDL-c High Density Lipoprotein-cholesterol

IAPP Islet Amyloid Polypeptide

IGT Impaired Glucose Tolerance

IL-6 Interleukin-6

IL-6R Interleukin-6 Receptor

IRS-1 Insulin Receptor Substrate-1

LD Linkage Disequilibrium

LDH Lactate Dehydrogenase

LDL Low Density Lipoprotein

LPL Lipoprotein Lipase

LPS Lipopolysaccharides

MCP-1 Monocyte Chemoattractant Protein-1

MDH Malate Dehydrogenase

MODY Maturity Onset Diabetes of the Young

mRNA messenger RNA

mtDNA mitochondrial DNA

MW Molecular Weight

NEFAs Non Esterified Fatty Acids

NIH National Institutes of Health

OGTT Oral Glucose Tolerance Test

PCR Polymerase Chain Reaction

PI3-K Phosphatidylinositol 3-kinase

PPAR-γ Peroxisome Proliferator Activated Receptor-gamma

RFLP Restriction Fragment Length Polymorphism

RIA Radioimmunoassay

sIL-6R soluble Interleukin-6 Receptor

SNP Single Nucleotide Polymorphism

SSCP Single-Strand Conformation Polymorphism

TG Triglycerides

TGF-β Transforming Growth Factor-beta

TNF-α Tumor Necrosis Factor-alpha

VLDL Very Low Density Lipoprotein

WC Waist Circumference

WHO World Health Organization

WHR Waist Hip Ratio

INTRODUCTION

AND AIM OF THE STUDY

The field of cytokines has expanded tremendously over the past two decades. Initially, thought to be the products of the immune system alone that had immune and hematological functions only. Yet, it has become increasingly apparent that cytokines participate in a neuroendocrine and immune system network (*Dimitris and Papanicolaou*, 2000).

There has been growing evidence that type 2 diabetes mellitus is associated with a subclinical inflammation and that chronic low-grade activation of the immune system plays a role in the pathogenesis of insulin resistance and type 2 diabetes. Although it is well established that insulin resistance and impaired insulin secretion are central to the pathogenesis of type 2 diabetes, it has been unclear how these abnormalities arise and how they are related to the many different clinical and biochemical features common in type 2 diabetes. Activation of innate immunity provides a new model for the pathogenesis of type 2 diabetes, which may explain some or all of these features (*Pickup*, 2004).

According to *Fernández-Real and Ricart* in 2003, adipose tissue expression and circulating IL-6 concentrations are positively correlated with obesity, impaired glucose tolerance, and insulin resistance. In addition to this, they stated that 1/3 of the circulating IL-6 has been shown to arise from adipose tissue, particularly visceral fat.

The high rate of plasma clearance of IL-6 suggests that IL-6 concentration is regulated mainly on the levels of transcription and translation (*Illig et al*, 2004). Therefore, the discovery of single nucleotide polymorphisms (SNPs) in the promoter region of IL-6 gene might be considered as risk factors for the development of type 2 diabetes (*Vozarova et al*, 2003). *Fishman et al* in 1998 identified a single base change (G→C) polymorphism at position -174 in the promoter region of IL-6 gene and stated that this polymorphism is of functional significance. The -174 G/C polymorphism has been reported as functionally important since it influences the transcriptional rate of the gene and in turn plasma concentrations of circulating IL-6 (*Bennermo*, 2005).

The aim of this study is to find out the role of IL-6 in the pathogenesis of type 2 diabetes mellitus. IL-6 gene polymorphism -174 G/C was also determined to see whether this single nucleotide polymorphism affects IL-6 levels and consequently its role in type 2 diabetes mellitus.

Type 2 Diabetes Mellitus An Overview

Introduction:

Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. Several pathogenic processes are involved in the development of diabetes. These range from autoimmune destruction of the \(\beta\)-cells of the pancreas with consequent insulin deficiency to abnormalities that result in resistance to insulin action. The basis of the abnormalities in carbohydrate, fat, and protein metabolism in diabetes is deficient action of insulin on target tissues. Deficient insulin action results from inadequate insulin secretion and/or diminished tissue responses to insulin. Impairment of insulin secretion and defects in insulin action frequently coexist in the same patient, and it is often unclear which abnormality, if either alone, is the primary cause of the hyperglycemia. (American Diabetes Association, 2008).

Type 2 diabetes, which accounts for ~90–95% of those with diabetes, was previously referred to as non-insulin-dependent diabetes, or adult-onset diabetes, and it encompasses individuals who have insulin resistance and usually have relative (rather than absolute) insulin deficiency. Although the specific etiologies are not known, autoimmune destruction of β-cells does not occur, which is the cause of most cases of type 1 diabetes (*American Diabetes Association*, 2008).

A link between obesity and type 2 diabetes has long been recognized. About 80% of patients are obviously obese at the time of diagnosis, usually with a central fat distribution in and around the abdominal cavity. In addition, many of those who are not obese by traditional weight criteria have an increased percentage of body fat, distributed predominantly in the abdominal region. Obesity is the main risk factor underlying the pandemic of type 2 diabetes and is also the most obvious target for measures to prevent type 2 diabetes (*Katsilambros and Tentolouris*, 2003).

Natural History of Type 2 Diabetes:

Type 2 diabetes is predicted by multiple traits, among which are obesity, visceral fat accumulation, insulin resistance and hyperinsulinemia itself (*Hanley et al*, 2003). In the individual who is destined to become diabetic, the factors that control glucose tolerance all must be more or less altered, generating a critical state of instability. In such a condition, phase transition can be triggered by relatively small further changes and occur relatively rapidly. In the case of glucose tolerance, transition from obese, insulin-resistant to overt diabetes may take the form of a large, rapid rise in glucose levels as a result of further loss of B-cell competence (*Ferrannini et al*, 2004).

Initially, insulin resistance is compensated for by the adaptive capacity of the \(\beta\)-cells to increase insulin concentrations, thus preventing any serious disturbance in glucose homeostasis. Ultimately, whether through worsening insulin resistance or progressive impairment of \(\beta\)-cell function, insulin secretion reaches a plateau, during which blood glucose