PERIPHERAL NEUROPATHY AND AUTONOMIC DYSFUNCTION IN HEPATITIS C VIRUS (HCV) RELATED CHRONIC LIVER DISEASE

thesis

Submitted for Partial Fulfillment of the Master

Degree in Internal Medicine

By

Salah Ata Allah Hamada Ahmed

(M.B., B.CH.)

Supervised by

Prof.DR. AFAF ABD EL-ADL EL SAWY

Professor of Internal Medicine
Faculty of Medicine
Cairo University

DR. WAEL MOHAMED AREF

Lecturer of Internal Medicine
Faculty of Medicine
Cairo University

DR. AYAT ALLAH FAROUK AHMED

Lecturer of Clinical Neuro Physiology Faculty of Medicine Cairo University

Internal Medicine Department
Faculty of Medicine
Cairo University
2007

ABSTRACT

polyneuropathy occurs with a combination of multiple symptoms, signs, and abnormal electrodiagnostic studies so electrophysiological examination should always be done to avoid underestimating peripheral neuropathy.

Autonomic disturbance can be assessed by recording PASP even in subclinical conditions. Also it gives a quantitative data about the degree of damage of descending sympathetic fibers, so that it will be very helpful for early diagnosis of autonomic dysfunction

Key words:

HCV - Peripheral – Neuropathy - Autonomic – Neuropathy

Acknowledgement

First and foremost thanks to Allah, most merciful and greatest beneficent.

I would like to express my deep thanks to **Prof. Dr. Afaf Abd El-adl El Sawy,** Prof. of Internal Medicine, Cairo

University, for the great effort and concern she has shown during the proposal and carrying out of this work.

Also I express my gratitude to **Dr. Wael Mohamed Aref** Lecturer of Internal Medicine, Cairo University for his encouragement and valuable advise that guided me throughout this thesis.

I carry a deep gratitude to **Dr. Ayat Allah Farouk Ahmed** Lecturer of Clinical NeuroPhysiology, Cairo University, for her supervision, continuous guidance and objective help.

I would like to express my deep thanks to **Prof. Dr.**Nadia Kamal Marie, Prof. of Internal Medicine. Al. Azhar

University and Dr. **Rokaya Abdel. Aziz Mohamed**Assist. Prof of Internal Medicine, Cairo University, whom coming to discusse my study.

CONTENTS

Introduction and aim of the work	1-3
Review of literature	4-97
* Hepatitis C. Virus	4
* Epidemiology Of hepaitis C virus	7
* The Infection	12
* Diseases associated with HCV	21
* Risk factors for liver fibrosis progression in patients with	30
chronic hepatitis C	
* Extra-hepatic manifestations of hepatitis C infection	35
* Diagnosis of HCV infection	47
* Prevention and control of HCV	55
* Antiviral chemotherapy for hepatitis C	57
* Peripheral neuropathy	75
* Autonomic neuropathy	78
* Evaluation of the autonomic nervous system	83
* Peripheral neuropathy and autonomic dysfunction in	87
hepatitis C virus	
Subjects and methods	100
Results	106
Discussion	120
Summary, Conclusion	125-127
Recommendation	128
References	129
Arabic summary	1

List of Tables

Table	Table title	Page No.	
Table 1	Isolates previously classified types 7,8,9 or 10 and 11 have been	6	
	reclassified within type 3 and type 6 respectively		
Table 2	Extrahepatic manifestation of HCV infection	37	
Table 3	Mean ± SD of age among examined groups	106	
Table 4	Sex distribution among examined groups	107	
Table 5	Clinical data of peripheral and autonomic neuropathy in different	107	
	groups and the significance of difference between groups		
Table 6	Mean ± SD of the amplitude and latency of sensory nerve		
	response in the ulnar and medial plantar nerves in the different		
	groups of the study and the significance of difference between the		
	groups		
Table 7	Mean ± SD of the amplitude and latency of sympathetic skin		
	response (SSR) in the upper and lower limbs in the different		
	groups of the study and the significance of difference between the		
	groups		
Table 8	Difference between the 3 groups as regards the significant	112	
	neurophysiological parameters		
Table 9	Percentage of abnormalities among different neurophysiological	113	
	parameters		
Table 10	Percentage of tingling within sensory, sympathetic and	115	
	polyneuropathy tests		
<u>Table 11</u>	Percentage of hypothesia within sensory, sympathetic and	116	
	polyneuropathy tests		
Table 12	Percentage of trophic within sensory, sympathetic and	117	
	polyneuropathy tests		
Table 13	Percentage of impotence within sensory, sympathetic and	118	
	polyneuropathy tests		
Table 14	Percentage of orthostatic BP within sensory, sympathetic and	119	
	polyneuropathy tests		


List of Figures

Fig. No.	Figure title	Page No.
<u>Fig. 1</u>	Clinical outcomes of HCV infection	22
<u>Fig. 2</u>	Mean medial planter N. sensory CV (M/sec) in the three studied groups.	109
Fig. 3	Mean medial planter N. sensory amplitude (uv) in the three studied groups.	109
<u>Fig. 4</u>	Mean SSR amplitude (uv) in UL in the three studied groups.	111
Fig. 5	Polyneuropathy sensory and/or autonomic among cirrhotic and ch. active hepatitis patients	114

List Of Abbreviations

ALT	Alanine aminotransferase
AN	Autonomic neuropathy
ANA	Antinuclear antibody
Anti. HBs	Anti hepatitis B surface antigen
CNS	Central nervous system
C1	Complement Component 1
C3	Complement Component 3
C4	Complement Component 4
СНС	Chronic hepatitis virusC
Cox-2	Cyclo oxygenase 2
CTL	Cytotoxic T lymphocyte
DM	Diabetes mellitus
DNA	Deoxy ribonuclease
ECG	Electro cardiogram
EIA	Enzyme immuno assay
ELISA	Enzyme linked immune sorbant assay
EMC	Essential mixed cryoglobulinaemia
EVR	Early virologic response
GBS	Guillain-Barre Syndrome
GIT	Gastro intestinal tract
HBV	Hepatitis B virus
НСС	Hepato cellular carcinoma
HCV	Hepatitis C virus
HIV	Human immune deficiency virus
HSV	Herpes simplex virus
IFN	Interferon

IgG	Immunoglobulin G
IgM	Immunoglobulin M
IL	Interleukin
ITP	Immune thrombocytopenic purupra
LKM	Liver Kidney microsomal antibody
LP	Lichen planus
M. Nos	Macrophage nitric oxide synthase
MHC	Major histocompatiblity
MMP	Matrix metallo proteinases
NF	Nuclear factor
NHL	Non-Hodgkin's lymphoma
No	Nitric oxide
ORF	Open reading fram
PCR	Polymerase chain reaction
PEG IFN	Pegylated interferon
PN	Peripheral neuropathy
RA	Rheumatoid arthritis
RIBA	Recombinant immunoblot assay
RNA	Ribonucleic acid
RT-PCR	Reverse-transcriptase polymerase chain reaction
S.S	Sjogren's syndrome
SLE	Systemic lupus erythramatous
SMA	Smooth muscle antibody
SSR	Sympathetic skin response
SVR	Sustained virologic response
TNF	Tumour necrosis factor
Vs	Versus
γ. GT	Gamma Glutamyle Transferase

INTRODUCTION

Hepatitis C virus (HCV) infection affects approximately 170 million persons world wide and is a pandemic 5 times larger than that of HIV. In united states and Brazil, approximately 2% of the population is seropositive for HCV. In Egypt, 28% of the population is seropositive for HCV (*Frank et al.*, 2000).

The most common mode of HCV transmission is percutanous exposure to contaminated blood, including situations associated with intravenous drug use and blood transfusions. HCV infection is a common cause of chronic liver disease, cirrhosis and hepatocellular carcinoma (*Lauer et al.*, 2001).

In addition to the liver manifestations, chronic HCV infection may be associated with a series of extra hepatic manifestations, such as mixed cryoglobulinaemia, membranoproliferative glomerulonephritis, auto immune thyroiditis and lymphoproliferative disorders.

These manifestations result from lymphoproliferative and/or auto immune mechanisms, and occur in 40 to 75% of patients with chronic HCV infection (*Gordon*, 1996).

The association of HCV infection with mixed cryoglobulinemia and peripheral neuropathy has been previously reported (*Zaltron et al.*, 1998).

However, its pathogenesis is not completely understood, nor do formal treatment guidelines exist. Peripheral neuropathy and detectable serum cryoglobulins appear in approximately one third of patients with HCV infection, but HCV-infected patients with peripheral neuropathy in the absence of serum cryoglobulins have also been described (*Zaltron et al.*, 1998 and lidove et al., 2001).

Cardiovascular autonomic and peripheral sensory neuropathy is a known complication of chronic liver disease (*Szalay et al.*, 1998).

Cardiovascular autonomic neuropathy (AN) represents a serious complication as it carries a 5-fold risk of mortality in patients with chronic liver disease (*Hendrickse et al.*, 1992).

Autonomic neuropathy may also be regarded as a potential etiologic factor of hyperdynamic circulation and portal hypertension (*Kempler et al.*, 1996).

AIM OF THE WORK

Due to the importance and prevalence of HCV in Egypt, this study will be carried out to delineate the spectrum of HCV associated neuropathy and assess its relation to liver cirrhosis.

Review of Literature Hepatitis C. Virus

HCV is a small RNA virus of about 9400 nucleotide bases (*Choo et al.*, 1989).

Details of the ultrastructure of hepatitis C virus virion remain unclear because it has proved extremely difficult to visualize virus particles from infected serum and tissues directly. Although much is known about the viral genome, first cloned in 1989, little is known about HCV morphogenesis, due to the lack of efficient in vitro culture system. Virus- like particles, obtained by expressing genes encoding the HCV structural proteins in mammalian cell, can be used as an alternative model for studying HCV morphogenesis. (*Roingeard et al., 2004*)

Humans are the only host species found to be naturally infected by HCV.

The only animals that are consistently susceptible to experimental HCV infection are chimpanzees, which develop a persistent viraemia and signs of hepatitis. (*Bassett et al.*, 1998)

Also the cloning of viral genome was achieved from pooled chimpanzees plasma. (*Choo, et al., 1989*)

Clinical and experimental data indicate the marked hepatotropism of HCV. Thus, in vivo, hepatocytes are currently believed to represent the major targets of virus replication. (*Cho et al.*, 1996)

Numerous attempts to grow HCV in vitro have been done, but to date, success has been modest. By using the reverse-transcriptase polymerase chain reaction (RT- PCR), evidence of low-grade viral replication has been obtained in primary human and chimpanzee liver cells. (*Ito et al.*, 1996)

In general, the virus titres produced have not only been low, but have also fluctuated markedly, with a tendency of the virus to disappear within days or weeks. (*Shimizu et al.*, 1994).

Further efforts are clearly needed to establish efficient means for reliable in vitro culture of HCV. (*Morrica et al.*, 1999).

The Genome and The Proteins Encoded:

HCV is a positive RNA virus with a genome which is a single stranded containing approximately 9500 nucleotides. It has an open reading frame (ORF) that encodes a large polyprotein of about 3000 aminoacids and is characterized by extensive genetic diversity (*Lyra et al.*, 2004).

The HCV- encoded polyprotein is cleaved post-translationally into multiple structural and non-structural peptides (*Lauer et al.*, 2001).

Classifications and nomenclature of HCV genotypes:

HCV has been classified into at least 6 major genotypes with many subtypes and circulate within an infected individual as a number of closely related but distinct variants known as quasispecies (*Lyra et al.*, 2004).

These genotypes differ by as much as 31 to 34 percent in their nucleotide sequences, whereas subtypes differ by 20 to 23 percent based on full-length genomic sequence comparisons (*National Institute of Health*, (*NIH*), 2002).