The Effect of Fluoride Application on the Diametral Tensile Strength of Different Ionomer Based Restoratives

Their
Submitted to the Faculty of Dentistry,
Ain Shams University

for

Partial fulfillment of the requirements of the Master Degree in

Conservative Dentistry

By
Lamiaa Mahmoud Moharram Hassan

B.D.S., Cairo University

Supervisors

Prof. Dr. Fadel Sobhi Osman

Professor of Operative Dentistry Department Conservative Dentistry Department Faculty of Dentistry, Ain Shams University

Dr. Farid Mohammed S. El-Askary

Associate Professor of Operative Dentistry Conservative Dentistry Department Faculty of Dentistry, Ain Shams University

Dr. Mohamed Hussein A. Zaazou

Researcher of Operative Dentistry Oro-Dental Research Department The National Research Center, Cairo

Acknowledgment

First of all I thank **God** deeply and express my gratitude for his guidance.

I would like to express my most sincere gratitude and grateful appreciation to Prof. Dr. Fadel Sobhi

Osman, Professor Of Operative Dentistry, Conservative Dentistry Department, Faculty of Dentistry, Ain Shams University. It was a great honor to work under his experienced supervision, and inspired by his sparkling enthusiasm throughout the whole work.

I deeply thank and faithfully express my gratitude and appreciation to Dr. Farid Mohammed S. El-

Askary, Associate Professor of Operative Dentistry, Conservative Dentistry Department, Faculty of Dentistry, Ain Shams University, for his valuable supervision, great support, encouragement, his friendly guidance and for the time he devoted.

I am indebted to Dr. Mohamed Hussein A.

Zaazou, Researcher of Operative Dentistry, Oro-dental Research Department, The National Research Center, for his technical and clinical experience, that he friendly shared, and for his continuous support and cooperation throughout the whole work.

Finally, I can not forget the effort done by all the members of **My Family**, without their support this work would never be finished.

To My

CONTENTS

	Page
List of tables	i
List of figures	ii
Introduction	١
Review of Literature	٣
Aim of the Study	٤٠
Matierals and Methods	٤١
Reults	0 £
Discussion	٦٢
Summary and Conclusions	٧.
References	٧٣
Arabic Summary	

LIST OF TABLES

Table No.	Title	Page
١	Factors investigated	٤٨
۲	Interaction between variables	٤٨
٣	Descriptive statistics and test of significance for the effect of fluoride application on the diametral tensile strength using different restorative materials after 12 hours	00
٤	Descriptive statistics and test of significance for the effect of fluoride application on the diametral tensile strength using different restorative materials after YA days	٥٨
٥	Descriptive statistics and test of significance for the effect of time on the diametral tensile strength within each fluoride application and restorative material	٦.

LIST OF FIGURES

Figure No.	Title	Page
1	Fuji II (Conventional glass ionomer cement)	٤٩
۲	Fuji II LC (Resin-modified glass ionomer cement)	٤٩
٣	Fuji IX (High-viscous glass ionomer cement)	٥,
٤	The two topical fluoride gel agent used in the study (all Solutions 1.77% APF gel and home	
	Care % Stannous fluoride gel)	٥,
٥	Split Teflon mould	٥١
٦	Injected material into the split Teflon mould placed between two microscope glass slides, two celluloid strips and clamped with two paper clamps	01
٧	Selected prepared specimens	٥٢
٨	Universal testing machine	07
٩	A specimen placed on the plate of the Universal testing machine during load application	٥٣
١.	Mean diametral tensile strength of different fluoride applications within each restorative material after 15 hours	०२

LIST OF FIGURES_(CONT..)

Figure No.	Title	Page
11	Mean diametral tensile strength of different fluoride applications within each restorative material after TA days	٥٨
١٢	Mean diametral tensile strength at different times within each fluoride application and restorative material	٦١

Since Wilson and Kent had first announced the development of the glass ionomer cements in 1977, it has shown to be a very useful adjunct to restorative dentistry. The term glass ionomer cement should be applied only to a material that involves a significant acid/base reaction as a part of its setting reaction and shows a continuous fluoride release. Glass ionomer cement composed of a calcium-alumino-silicate glass powder and an aqueous solution of an acrylic acid (homo or copolymer). The aim was to produce a cement with characteristics of both silicate cement with those of the polycarboxylate cement. Adhesion tooth to structure, anticariogenic properties, and biocompatibility are important properties of these cements. On the other hand, glass ionomer cements suffer from disadvantages such as; short working time, brittleness, poor resistance to wear, susceptibility to moisture contamination or dehydration as well as the inferior mechanical properties, namely compressive strength, flexural strength and diametral tensile strength(**,**1,**).

Originally, the cement was designed for the aesthetic restorations of the anterior teeth and it was recommended for use in restoring teeth with class III and V cavity preparations^{$(\tau, \epsilon\tau)$}.

In the late 1944's and early 1994's light cured glass ionomers were released on the market. So, resin-modified glass

ionomer cement was designed to produce favorable physical properties similar to those of resin composites while maintaining the basic features of the conventional glass ionomer cements^(r). In mid-1990s a subset of glass ionomer cements, the high viscous glass ionomer cements, were introduced. These high viscous glass ionomers are particularly useful for atraumatic restorative treatment technique (ART)^(r).

The purpose of this study was to investigate the effect of two topical fluoride gels on the diametral tensile strength of three different ionomer based restoratives.

Glass ionomer is the generic name of a group of materials that use silicate glass powder and an aqueous solution of polyacrylic acid. This material acquires its name from its formulation of a glass powder and an ionomeric acid that contains carboxyl groups; it is also referred to as The glass ionomer cement was polyalkenoate cement. developed in response to the need for an adhesive filling material. It is the product of the hardening reaction between an ion-leachable glass and an aqueous solution of polyacrylic acid (acid/base reaction), during which the polyanion chains in the liquid become cross-linked with metal ions to form a hard gel^(r·,°). During the setting reaction which is highly sensitive to early water exposure as well as dehydration a variety of ionic constituents is released from the glass, including fluoride. The cariostatic effects of fluoride on oral bacteria and plaque are well documented and achieved from an increase of fluoride content in saliva, plaque and dental hard tissues, as the fluoride released increases tooth caries-resistance through the resistance of the acid attacks, thus; the tooth becomes less susceptible to caries. A large fluoride release occurs over the first re-en hours followed by a rapid decline (19,01).

Kent et al. 1979^(*) evaluated the preparation of novel fluorine-containing aluminosilicate glasses along with the properties of cements formed by their reaction to aqueous solutions of polyacrylic acid (PAA). Glasses were prepared and

concentrated (PAA) solutions were prepared. Cement pastes were made from various glass powders and aqueous solutions of (PAA). The properties of these cements-consistency, setting time, compressive strength, a laboratory measurement of working time, solubility and disintegration were assessed. The results showed that; the use of $A_{1\tau}O_{\tau}$:Si O_{τ} ratio was of considerable importance in controlling the rate of setting. An increase in AlPO_{ξ} and fluoride content had increased the working time. They concluded that; the controlling factor of the set was the $Al_{\tau}O_{\tau}$:Si O_{τ} ratio. The entry of $Al^{\tau_{\tau}}$ into networkforming sites increased the vulnerability of a glass to acid attack. The presence of Na⁺ ions in glasses had an adverse effect on the hydrolytic stability of the prepared cements.

Diaz-Arnold et al. 1999(17) studied the short-term fluoride release/uptake of four glass ionomer restoratives. Samples were fabricated and stored in deionized water. Initial fluoride release was measured at 12 hours intervals for seven days, and 12 hours intervals at the end of each week for five weeks, samples were divided into groups and each group was treated for six minutes with one of the following: APF, neutral NaF, and SnF, gels. Fluoride measurements were carried out at 12 hours intervals for seven days, and 12 hours intervals at the end of the two weeks. Fluoride exposure was repeated, and measurements were again recorded over three weeks. The results showed that; initial fluoride release by all materials was highest during the first 12 hours and decreased sharply over

the first week. After exposure to APF, fluoride release increased significantly for all materials. Exposure to NaF also resulted in increased fluoride release for all materials although it was not as high as the increase recorded after exposure to APF gel. They concluded that; certain fluoride gels may replenish fluoride within some glass ionomers and thus prolong their cariostatic potential.

Grobler et al. 1994(14) compared the fluoride release from various dental materials (four resin-modified glass ionomers a polyacid-modified composite resin and a bonding agent). Samples were prepared and suspended in water up to redays; re-hours fluoride release was determined. The results showed that; the variation in the amount of fluoride released for each material at each time interval was the highest for Vitremer, then Fuji II LC and the lowest for Optibond. No significant fluoride levels could be found for Zl... They concluded that; the amount of fluoride released during the first day was the greatest for Vitremer than Advance, Fuji II LC, OptiBond, Dyract Componer and Enforce. At the second day there was a slight change and fluoride release had remained almost the same for the rest of the rest also an increase in fluoride release during the verve day period relative to previous period.

Vermeersch et al. Y... (°') evaluated the short and long term fluoride release of: seven conventional glass ionomers, five

light-cured glass ionomers, two polyacid modified resin composites and two resin composites. Samples were prepared and then suspended in deionized water. After different incubation times, the samples were rinsed with deionized water and transferred to fresh water. Measurement of fluoride was done. The results showed that; conventional GICs release more fluoride than resin-modified GICs, which release more than high powder:liquid ratio GICs. They concluded that; the initial fluoride release from all materials was highest during the first to hours and decreased sharply over the first week. However, it was impossible to correlate the fluoride release of the materials by their type except if we compared the products from the same manufacturer.

Ellakuria et al, *..**('^) compared the effect of a \range month storage period in water on the surface microhardness, measured in Vickers units (VH), between a glass ionomer cement (GIC) and a resin-modified glass ionomer cement (RMGIC) group and to determine if the addition of resins improved the GIC microhardness. VH microhardness was assessed for the samples stored in distilled water for \range months. Measurements were taken at \range v, \range v, \range v, \range v, \range and \range v \range days. The results showed that; there were significant VH differences among the materials studied and within each material over storage time. GICs, except for KS, showed a higher VH throughout the study period. Among RMGIC, VI showed a significantly higher VH at \range months than at one day. The VH

٦