

STUDY OF DIASTOLIC DYSSYNCHRONY IN PATIENTS WITH STAGE C AND D HEART FAILURE WITH AND WITHOUT PROLONGED QRS DURATION

A thesis submitted in partial fulfillment of the Medical Doctorate (MD) Degree in Cardiology

Ву

Ahmed Mohamed ElGuindy

MSc, MRCP (UK)

Under the supervision of Professors

Hussein H. Rizk, MD

Professor of Cardiology, CairoUniversity

Wafaa A. El Aroussy, MD

Chair and Professor of Cardiology, Cairo University

Azza A. Farrag, MD

Professor of Cardiology, CairoUniversity

Faculty of Medicine

CairoUniversity

2013

ABSTRACT

Diastolic dyssynchrony has rscently beenrecognized as a common feature in both

Systolic and diastolic heart failure. This study aims to identify the prevalence of diastolic

Dyccynchrony in heart failure with preserved and with reduced ejection fraction as well

As correlate the degree of diastolic dyssynchrony with various indices of systolic and

Diastolc function. The currentstudy concluded that LV diastolic dyssynchrony is

Common (occurring in 42.5% of patients with satges C and D heart failure) and shows

Significant correlation with the myocardial performace index and pulmonary artery artery

Systolic pressur.

Key words:

Diastolic dyssynchrony

Heart failure with preserved ejection fraction

Heart failure with reduced ejection fraction

CONTENTS

Item	Page
ACKNOWLEDGMENTS	II
LIST OF ABBREVIATIONS	III
LIST OF FIGURES	VII
LIST OF TABLES	IX
INTRODUCTION	1
AIM OF WORK	3
REVIEW OF LITERATURE	4
Chapter 1: Synchrony and Dyssynchrony of Left Ventricular Mechanics	5
Chapter 2: Detection and Evaluation of Ventricular Dyssynchrony	24
Chapter 3: Optimizing Cardiac (atrial and ventricular) Synchrony by	33
Resynchronization Therapy Chapter 4: Role of Cardiac Resynchronization Therapy in the Treatment	79
of Heart Failure	1)
STUDY POPULATION AND METHODS	89
RESULTS	100
DISCUSSION	113
SUMMARY AND CONCLUSIONS	124
REFERENCES	128
MASTER TABLES	140
ARABIC SUMMARY	149

ACKNOWLEDGMENTS

I would like to thank my mentors and colleagues for their unfailing help and support in completing this work.

I am extremely grateful to Prof. Hussein Rizk and Prof. Wafaa El-Aroussi who have been very supportive to me throughout my training years. Their continuous help has been instrumental in guiding me through the process of patient selection, evaluation and interpretations of the results. I am deeply indebted to Prof. Azza Farrag for her immense help in analyzing the echocardiograms and data, for the continuous discussions throughout the various stages and for her unwavering overall support.

My heartfelt thanks go to Prof. Sir Magdi Yacoub - who despite not being directly involved in this thesis – has had a profound impact on my approach to research and clinical practice. The avid pursuit of excellence, unparalleled dedication to science and patients and the humbleness of a true scientist are but a few of the traits that strike everyone who has had the privilege of working with him.

I remain thankful to my family for their solid support, encouragement and patience throughout the different stages of this work. Finally, I wish to express my deepest gratitude to my father; his mentorship, guidance and priceless advice have always been cornerstone to my progress.

Ahmed ElGuindy

LIST OF ABBREVIATIONS

6MWT 6-minute walk test

A Late mitral inflow

A' Peak late diastolic mitral annular velocity

ACC American College of Cardiology

ACEI Angiotensin-converting enzyme inhibitors

AF Atrial fibrillation

AHA American Heart Association

ANP Atrial natriuretic peptide

APD Action potential duration

AS Atrial sensed

AS-VP Atrial sensed-to-ventricular paced

ATP Adenosine triphosphate

AV Atrioventricular

AVD Atrioventricular delay

BiVP Biventricular pacing

BNP Brain natriuretic peptide

CAD Coronary artery disease

cGMP cyclic Guanosine monophosphate

CHF Congestive heart failure

CKD Chronic kidney disease

CMR Cardiac magnetic resonance

COMPANION Comparison of Medical Therapy Pacing and Defibrillation in Heart Failure

COPD Chronic obstructive lung disease

CRT Cardiac resynchronization therapy

CT Contraction time

CVS Cerebrovascular stroke

DM Diabetes mellitus

E Early mitral inflow

E' Peak early diastolic mitral annular velocity

ECG Electrocardiogram

ECM Extracellular matrix

EF Ejection fraction

EGM Electrogram

ESC European Society of cardiology

ESPVR End-systolic pressure-volume relationship

ET Ejection time

FDA Food and Drug Agency

FDG Fluorodeoxyglucose

HTN Hypertension

ICD Implantable cardioverter defibrillator

IVC Isovolumic contraction

IVCD Intraventricular conduction delay

IVCT Isovolumic contraction time

IVR Isovolumic relaxation

IVRT Isovolumic relaxation time

IVS Interventricular septum

LA Left atrium

LAP Left atrial pressure

LBBB Left bundle branch block

LV Left ventricle

LVEDD Left ventricular end-diastolic dimension

LVEDV Left ventricular end-diastolic volume

LVEF Left ventricular ejection fraction

LVESD Left ventricular end-systolic dimension

LVESV Left ventricular end-systolic volume

MADIT-CRT Multicenter Automatic Defibrillator Implantation Trial with Cardiac

Resynchronization Therapy

MAP Mitogen-activated protein

MIRACLE Multicenter InSync Randomized Clinical Evaluation

MLWHF Minnesota Living With Heart Failure

MR Mitral regurgitation

MRI Magnetic resonance imaging

MUSTIC Multisite Stimulation in Cardiomyopathy

NT N-terminal

NYHA New York Heart Association

PASP Pulmonary artery systolic pressure

PATH-CHF Pacing Therapies in Congestive Heart Failure

PCT Pre-contraction time

PET Positron emission tomography

PROSPECT Predictors of Response to Cardiac Resynchronization Therapy

PVd Pulmonary vein diastolic flow

PVs Pulmonary vein systolic flow

PWT Posterior wall thickness

QOL Quality of life

QTc Corrected QT interval

RBBB Right bundle branch block

REVERSE Resynchronization Reverses Remodeling in Systolic Left Ventricular

Dysfunction

RV Right ventricle

RVSP Right ventricular systolic pressure

RyR Ryanodine receptor

S' Peak mitral annular systolic velocity

SD Standard deviation

SERCA Sarcoplasmic endoplasmic reticulum Ca²⁺ ATPase

SPECT Single-photon emission computed tomography

SPWMD Septal-to-posterior wall motion delay

SR Sarcoplasmic reticulum

SV Stroke volume

TAPSE Tricuspid annular plane systolic excursion

TDI Tissue Doppler imaging

TNF Tumor necrosis factor

TST Total systolic time

VCF Velocity of circumferential fiber shortening

VF Ventricular fibrillation

VS Ventricular sensed

VT Ventricular tachycardia

VTI Velocity time integral

VV Ventriculo-ventricular / interventricular

Vp Propagation velocity

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1	Effects of synchronous and asynchronous ventricular activation	9
Figure 2	LBBB-induced asynchrony	10
Figure 3	Effects of augmented mitral valve leaflet tethering in dilated cardiomyopathy	11
Figure 4	Pressure-volume loops during LBBB and LV pacing	12
Figure 5	Pressure-volume graphs from a patient with baseline LBBB as a function of varying pacing sites	12
Figure 6	Atrial transport block caused by inappropriately short pacemaker AV interval	20
Figure 7	Mean frontal plane QRS axis during various conditions of ventricular pacing	56
Figure 8	Schematic representation of optimal AV coupling	59
Figure 9	Schematic hemodynamic effects of AV decoupling on LV pump function	60
Figure 10	Hemodynamic effects of short A-V interval on LV pump function	60
Figure 11	Left ventricular diastolic event timing relationships	61
Figure 12	Effect of atrial pacing on diastolic function during CRT	62
Figure 13	Interaction between AV delay and V-V interval to determine LV activation fusion	66
Figure 14	Schematic representation of interaction among anterior line of LV conduction block, and paced activation wavefront fusion	68
Figure 15	Schematic representation of interaction among posterior line of LV conduction block, and paced activation wavefront fusion	69
Figure 16	Schematic representation of interaction among anterior line of LV block. LV stimulation site proximal to line of block, and failure to	69

achieve paced activation wavefront fusion

Figure 17	Schematic of interaction among anterior zone of fixed block caused	70
	by scar, LV stimulation site, and paced activation wavefront fusion	
Figure 18	Schematic representation of interaction between unequal BiV paced	70
	activation wavefront conduction times and paced activation	
	wavefront fusion	
Figure 19	Schematic of persistent sequential (R→L) ventricular activation	71
	despite BiV pacing caused by LV capture latency and differentia;	
	paced activation wavefront conduction times	
Figure 20	Algorithm of indications for CRT	82
Figure 21	Septal to posterior wall motion delay by M-mode	93
Figure 22	Calculation of myocardial performance index	94
Figure 23	Tissue Doppler-derived indices	96
Figure 24	Tissue Doppler-derived intervals	97
Figure 25	Prevalence of cardiovascular risk factors and comorbidities	102
Figure 26	Mean ± SD of systolic dyssynchrony in patients and controls	107
Figure 27	Relation between systolic dyssynchrony and QRS duration	107
Figure 28	Relation between systolic dyssynchrony and LV ejection fraction	108
Figure 29	Mean ± SD of diastolic dyssynchrony in patients and controls	109
Figure 30	Relation between diastolic dyssynchrony and myocardial	109
	performance index	
Figure 31	Relation between diastolic dyssynchrony and pulmonary artery	110
	systolic pressure	
Figure 32	Relation between diastolic dyssynchrony and QRS duration	110
Figure 33	Relation between diastolic dyssynchrony and corrected QT interval	111
Figure 34	Relation between diastolic dyssynchrony and lateral E/E'	111
Figure 35	Relation between diastolic dyssynchrony and LV ejection fraction	112
Figure 36	Relation between diastolic and systolic dyssynchrony	112

LIST OF TABLES

TABLE	TITLE	PAGE
Table 1	Components of LV remodeling	22
Table 2	Changes in the biology of the failing myocyte	22
Table 3	Mechanical disadvantages created by LV remodeling	23
Table 4	Recommendations for CRT in patients with systolic heart failure	35
Table 5	Trials of biventricular pacing for heart failure	45
Table 6	Patient characteristics and comorbidities at study entry	91
Table 7	Baseline characteristics of patients and controls	102
Table 8	Electrocardiographic findings in patients and controls	103
Table 9	M-mode measurements, ventricular volumes and LV systolic function	104
Table 10	Echocardiographic parameters of LV diastolic function	105
Table 11	Echocardiographic indices of systolic and diastolic dyssynchrony	106

INTRODUCTION

Cardiac resynchronization therapy (CRT) is an established therapy for patients with advanced heart failure (HF). The basic premise is that cardiac dyssynchrony complicates or causes myocardial dysfunction and that retiming of the sequence of contraction can improve cardiac function, thereby improving symptoms and reducing cardiovascular morbidity and mortality. Conceptually, cardiac dyssynchrony includes altered sequence of both cardiac contraction and relaxation. It encompasses AV dyssynchrony, interventricular dyssynchrony and intraventricular dyssynchrony. Whether interatrial dyssynchrony or dyssynchronous contraction within the thickness of the myocardial wall has an important effect on cardiac function remains uncertain.¹

Diastolic dyssynchrony is at least as common as systolic dyssynchrony in patients with systolic heart failure and frequently exists without concurrent systolic dyssynchrony in this patient population ²⁻⁴. In diastolic heart failure, diastolic dyssynchrony occurs in more than half of such patients and is more frequent than systolic dyssynchrony ⁵. Several pathophysiological mechanisms have been proposed to account for diastolic dyssynchrony in patients with systolic or diastolic heart failure. The most obvious explanation is that it occurs secondary to systolic dyssynchrony; the segments with delayed contraction also show delayed relaxation ^{6,7}. Another potential reason is the presence of coronary artery disease which results in asynchronous regional diastolic function that improves after coronary revascularization ⁸⁻¹⁰. Additionally, diastolic function and ventricular filling pattern appear to be important components of the underlying pathophysiology of diastolic dyssynchrony. The degree of diastolic but not systolic dysfunction has been shown to predict diastolic dyssynchrony 11. Moreover, LV filling abnormalities related to ventricular interaction in diastole are of crucial importance. Left ventricular filling may be impeded in up to one-half of HF patients due to ventricular interaction from raised right ventricular diastolic pressure and by external compression from the pericardium. This diastolic interaction could explain the delayed onset of mechanical diastolic motion in the left ventricle even in patients without concurrent systolic dyssynchrony ¹².

There is powerful evidence from a series of randomized controlled trials that CRT is an effective treatment of patients with heart failure who fulfilled their entry criteria which universally included patients with left ventricular dilatation, systolic dysfunction, wide QRS duration (≥ 120 ms) and in sinus rhythm. Nevertheless, only limited information on the pathophysiology of diastolic dyssynchrony and its affection by CRT is available. In small cohort studies, either no improvement in diastolic dyssynchrony ¹³ or less improvement than in systolic dyssynchrony ¹²has been demonstrated shortly after the initiation of biventricular pacing. A mid-term follow up study showed improvement in diastolic dyssynchrony only in patients with nonischemic cardiomyopathy, whereas systolic dyssynchrony improved regardless of the heart failure etiology ³. Recently, a large cohort study of heart failure patients, demonstrated significant improvement of both systolic and diastolic dyssynchrony acutely and at 6 months after CRT, with no difference between patients with ischemic and nonischemic HF. ¹⁴

Despite significant shortening of QRS duration with CRT, there is only a weak correlation between the reduction QRS duration and improvement in systolic dyssynchrony. No such correlation was observed for diastolic dyssynchrony, suggesting that the improved coordination of LV myocardial relaxation with CRT is independent of electrical activation.¹⁴

The lack of response to CRT in up to 30% of patients remains one of the greates challenges of such therapy. This has been variously attributed to lack of mechanical dyssynchrony in some patients with broad QRS, suboptimal lead placement or incorrect device setup. The myocardial scar burden and its location have also been incriminated, with nonresponders to CRT having 3 or more scar segments and delivery of pacing over the scarred segments ¹⁵. The role of uncorrected diastolic dyssynchrony in CRT nonresponders has also been proposed, but not adequately addressed and may turn out to be a significant contributor to such phenomenon.

In addition to providing better understanding of cardiac diastolic function, identifying the prevalence of diastolic dyssynchrony in patients with both systolic and diastolic heart failure as well as the variables that affect diastolic resynchronization is paramount in selecting the appropriate candidates for the invasive and expensive procedure of CRT.

AIM OF WORK

This study has three primary objectives:

- 1. Study the prevalence and magnitude of diastolic dyssyncrony in patients with both heart failure with preserved ejection fraction and heart failure with reduced ejection fraction.
- 2. Identify whether the degree of diastolic dyssynchrony is related to the severity of
 - a. Diastolic dysfunction
 - b. Systolic dysfunction
 - c. Systolic dyssynchrony
 - d. QRS width and QT interval
- 3. Correlate the degree of diastolic dyssynchrony with various echocardiographic indices of left ventricular systolic and diastolic function.

REVIEW OF LITERATURE