The Role of Phase Contrast MRIin Studying Cerebrospinal Fluid Dynamics in Relevant Pathologies

Essay
Submitted for the Partial Fulfilment of
Master Degree of Radiodiagnosis

By Maram Mahmoud Gamal Tawfik M.B.B.Ch.

Supervised by **Prof. Dr. Mounir Sobhy Guirguis**

Professor of Radiodiagnosis
Faculty of Medicine
Ain Shams University

Dr. Rania Mohammed Refaat Abd El Hamid

Lecturer of Radiodiagnosis
Faculty of Medicine
Ain Shams University

Faculty of Medicine
Ain Shams University
2013
Acknowledgement

First of all, I thank Allahfor all his blessings and care, that helped me finish this work.

would like to express my thanks and deep gratitude to Prof. Dr. Mounir Sobhy Guirguis Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his guidance, advice and thoughtful remarks.

Also I would like to express my thanks and appreciation to Dr. Rania Mohammed Refaat Abd El Hamid Lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his continuous encouragement, help and valuable comments.

Last but not least, I would like to thank my family for their help and encouragement and I would like to dedicate this work to them.

List of Contents

Introduction
Aim of the Work12
Anatomical and Physiological Basis for CSF Pathway 13
Physical Principle of Phase Contrast MRI 45
Different Pathologies Affecting CSF Flow 66
Phase Contrast MRI Manifestations of Different Pathologies Affecting CSF Flow with Illustrative Cases 101
Summary and Conclusion
References
Arabic Summary

List of Tables

Table No.	Title	Page No.

Table (1): Tradition	onal theories of pathogenesis of hydrocephalus. 69
Table (2):	Causes and sites of obstruction 73
Table (3):	Indications for ETV divided into two groups 81
Table (4):	Sites of arachnoid cysts. 91

List of Figures

Fig. No.	Title	Page No.
9		. age

Figure (1):Ventricles of the brain. Labels" R.SP. recessus suprapinealis	14
Figure (2):Coronal section through the frontal lobes and the anterior horns of	f the lateral vent
Figure (3):Dissection, to show the fornix and the posterior and descending con	rnua of the latera
Figure (4):Dissection, to show the posterior and descending cornua of the late	eral ventricle hip
Figure (5):Coronal illustration of the right temporal lobe showing the optic ra	diation isolated
Figure (6):Illustration of the anatomy of the third ventricle	20
Figure (7): Anatomy of the third ventricle	21
Figure (8): Normal anatomy of the cerebral aqueduct as viewed in the sagitta	l plane 23
Figure (9):Sagittal section showing fourth ventricle	25
Figure (10): Sagittal section of the brain illustrating the positions of the princ	ipal subarachnoi
Figure (11):Coronal section through the vertex of the skull showing the relati	ionships between
Figure (12):	30
Figure (13): Axial T2 MRI image showing body of lateral ventricle	30
Figure (14): Axial T2 MRI image showing temporal horn of lateral ventricle	31
Figure (15): Sagittal T2 MRI image showing body of lateral ventricle	31

List of Figures (Cont...)

Fig. No. Title Page No.

Figure (16): Coronal T2 MRI showing occipital horn of lateral ventricle	32
Figure (17): Axial T2 MRI image showing Third Ventricle	33
Figure (18): Sagittal T2 MRI showing Third, Fourth Ventricle and cerebral ag	ueduct 33
Figure (19): Coronal T2 MRI image showing Third Ventricle	34
Figure (20):	34
Figure (21): Axial T2 MRI image showing 4th ventricle	35
Figure (22): CSF drainage pathways	39
Figure (23): Showing piston like remolding of brain structures during systole	41
Figure (24):Diagrams show that spins moving along an external magnetic fie	ld gradient acqui
Figure (25): Diagram shows that two acquisitions are performed, each one with	th all parameters
Figure (26):	54
Figure (27):(a) Sagittal T1W MR image shows the phase-contrast imaging pl	ane to assess aqu
Figure (28): Axial phase-contrast images obtained perpendicular to the aqued	uct. 56

Figure (29):(A) Sagittal reference image with axial section perpendicular to the spinal canal a

List of Figures (Cont...)

Fig. No.	Title	Page No.	
Figure (30):The midlin	ne sagittal T1-weigh	nted MRI study is used to g	raphically describe the ph
	_	image showing the position	
		cting the CSF flow wavefor	
		nages(a) end of CSF diastole	
		mics during one cardiac cyc	
Figure (35):Axial			
_			71
· ·	•	ghted image showesTetra vo	
		ghted image shows commun	
	-	ge shows aqueductal steno	
Figure (39):Postoperat	tive MRI scan of a p	patient shows the fenestrat	ion site in ETV and flow
Figure (40):Sagittal T	2-weighted image sl	hows Chiari I malformatior	n, note that the vermis (V
Figure (41):	The anator	ny of a Chiari I malformati	on 86
Figure (42):A: Cor	onal T2-weighted in	nage, B: Axial FLAIR imag	e 91
Figure (43): I	llustration of intrac	ranial arachnoid cyst locati	on 92
		mations of the posterior fos	
Figure (45):		.Dandy-Walker malformati	on 95
List	of Figures	(Cont)	

Fig. No.	Title	Page No.		
Figure (46):	I	Dandy-Walker variant	96	
Figure (47):	Minor form of I	Dandy-Walker variant	97	
Figure (48):		The Blake's pouch.	98	
Figure (49):	Pe	rsistent Blake's pouch	99	
	• • • • • • • • • • • • • • • • • • • •		100	
Figure (51):	Aqueductal CSF	I flow velocity of NPH.	104	
Figure (52):Comp	arison of CSF flow dynamics be	fore and afterVP shunt i	in the NPH	group. 10
Figure (53):	Complete aqueductal stenos	sis and hydrocephalus.	107	
Figure (54): A, Sa	gittal T1-weighted image obtair	ned before the third vent	riculostomy.	. Large la
Figure (55):A 20-y	year-old man with headaches ar	nd a communicating left	middle cran	ial fossa .
Figure (56):	A left middle cranial fossa cys	t 1 week after surgery	112	
Figure (57): Phase	e-contrast MR images of Chiari	I patient show restricted	CSF flow	114
Figure (58):Color	and surface plot images of CSF	flow velocity in the fora	men magnu	m of Chia

Figure (59): Quantitative	phase-contrast image shows a delayed peak velocity	position and	pro
Figure (60):	Cervical syringomyelia	118	
Figure (61):	Pre- and postoperative evolution.	119	
Figure (62): Dandy walke	r malformation (A) T2-w axial image, (B) T1-w sagitt	tal image,(C)	pha

List of Figures (Cont...)

Figure (63):A 3-month-old infant with multiple congenital anomalies examined by cranial MR **Figure (64):**A 20-year-old male with the diagnosis of persistent BPC presented with vertigo an **Figure (65):**An 18-year-old male with the diagnosis of MCM presented with headache

List of Abbreviations

Abb. Full term

AC Arachnoid cysts

ACSVAqueductal CSF stroke volume

AS Aqueductal stenosis

BPC Persistent Blake's pouch

CECT Contrast enhanced computed tomography

CTC Computed tomography cisternography

CIM Type I Chiari malformation

CIIM Type II Chiari malformation

CSF Cerebrospinal fluid

CT Computed tomography

DWM Dandy-Walker malformation

DMV Dandy-Walker variant

ECG Electrocardiography

ETV Endoscopic third ventriculostomy

FLAIR Fluid attenuation inversion recovery

FLASH Fast low angle shot

Gd Gadolinium

GRE Gradient recalled echo

HR Heart rate

ICP Intracranial pressure

MCM Mega cisterna magna

MRI Magnetic resonance imaging

NECTNon enhanced computed tomography

NEX Number of excitations

NPH Normal pressure hydrocephalus

PC-MRI Phase contrastmagnetic resonance imaging

PD Proton density

PSV Peak systolic velocity

PDV Peak diastolic velocity

R-D Time after *R* wave to onset of CSF diastole.

ROI Region of interest

R-PDV R-wave to peak diastolic velocity.

R-PS Time after R wave to peak of CSF systole

R-S Time after R wave to onset of CSF systole

SDFC Subdural fluid collection

SNR Signal to noise ratio

SV Stroke volume

TE Echo time

TR Repetition time

Venc Velocity encoding

VP shunt Ventriculoperitoneal shunt

2D 2 dimensions

3D 3dimensions

Introduction

The Cerebrospinal Fluid (CSF) flow is influenced twoseparate processes; the circulation of the CSF from its formation sites to its absorption sites (i.e., bulk flow) and an oscillatory (back and forth) flow during the cardiac cycle (pulsatile flow) (Alperin et al., 2006). Phase contrast MRI non invasively displays this pulsatory CSF motion and allows assessment of its amplitude (Bhadelia et al., 1997).

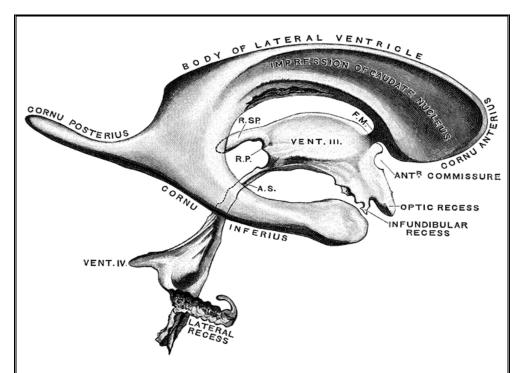
Cine phase contrast MRI has many advantages other than non invasivenessincluding no need for patient preparation or contrast media injection, no ionizing radiation exposure and overall examination duration less than 15 min(Unal et al., 2009). Moreover, it is extremely sensitive, even to slow flow (Schroeder et al., 2000).

Phase contrast MR flow studies can be used as a selective noninvasive method for establishing the diagnosis of normal pressure hydrocephalus (Al-Zain et al., 2008), to discriminate between communicating hydrocephalus and non communicating hydrocephalus, to localize the level of obstruction obstructive hydrocephalus, to differentiate between arachnoid cysts and subarachnoid space enlargement and to determine whether arachnoid cysts communicate with the subarachnoid space (*Yildiz et al.*, 2006).

Cine phase-contrast MR imaging for CSF flow evaluation may be a useful adjunct to routine MR imaging in the evaluation of the cystic malformations of the posterior fossa because it can improve the specificity in differentiating such malformations (Yildiz et al., 2006). Phase contrast cine MR imagingis considered a reliable method for evaluating the patency of a third ventriculostomy (Fukuhara et al., 1999) and has been adopted for the assessment of CSF flow in a variety of disorders including Chiari I malformation and syringomyelia (Wentland et al., 2010).

AIM OF THE WORK

Aim of this work is to emphasize the role of phase contrast MRI in evaluation of CSF flow in relevant pathologies.


Anatomical and Physiological Basis FOR **CSF** PATHWAY

A- The anatomy of ventricular system:

The cerebral ventricular system consists of a series of interconnecting spaces and channels within the brain (Figure 1) which are derived from the central lumen of the embryonic neural tube and the cerebral vesicles to which it gives rise:

- Two lateral ventricles.
- Third ventricle.
- Fourth ventricle (Crossman, 2005).

Figure (1): ventricles of the brain. Labels" R.SP. recessus suprapinealis; R.P., recessus pinealis inferius; A.S., aqueduct of Sylvius; F.M., foramen of Monro (*Cunningham and Romans*, 1993).

■ <u>Lateral Ventricle:</u>

Within the cerebral hemisphere lies the lateral ventricle. Viewed from the lateral aspect, the lateral ventricle has a roughly C-shaped profile (*Figure 1*) with an occipital tail. It is divided into a body and frontal (anterior), occipital (posterior) and temporal (inferior) horns.

Frontal (anterior) horns

Passes forward and lateralward from the interventricular foramen into the frontal lobe. Its floor is formed by the upper surface of the corpus callosum. It is bounded medially by the

anterior portion of the septum pellucidum and laterally by the head of the caudate nucleus. Its apex reaches the posterior surface of the genu of the corpus callosum (figure 2) (Ryan and Nicholas, 2004).

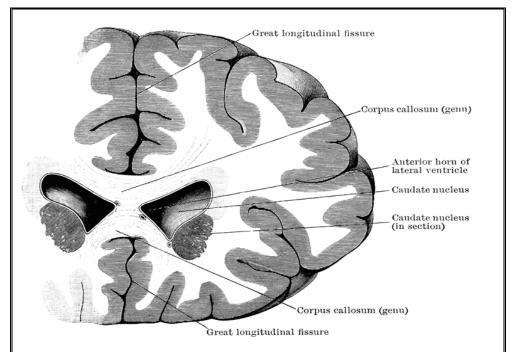


Figure (2): Coronal section through the frontal lobes and the anterior horns of the lateral ventricles (*Cunningham and Romans*, 1993).

The *body of the lateral ventricle* lies within the frontal and parietal lobes, and extends from the foramen of Monro to the splenium of corpus callosum (*Figure 1*). The bodies of the two ventricles are separated by the septum pellucidum, which contains the columns of the fornices in its lower edge (*Figure 3*). The inferior limit of the body and its medial wall are formed by the body of the fornix. The coronal profile of the body is a flattened triangle with an inward bulging lateral wall formed by