

Role of Transthoracic Sonography in Assessment of Interstitial Lung Diseases in comparison with High Resolution Chest Computed Tomography

Thesis

Submitted for partial fulfillment of M.D Degree in Chest Diseases

Presented by

Osama Mohammed Mahmoud Mohammed

M.B.B.Ch, M.S. Chest Diseases

Supervised by

Prof. Dr. Taher Abd El Hamid El Naggar

Professor of Chest Diseases
Faculty of Medicine, Ain Shams University

Prof. Dr. Iman Hassan El Sayed Galal

Professor of Chest Diseases
Faculty of Medicine, Ain Shams University

Ass. Prof. Ashraf Adel Gomaa

Assistant Professor of Chest Diseases Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2018

دور الموجات الصوتية عبر الصدر في تقييم الامراض الخلالية الرئوية □مقارنة بالتصوير المقطعي للصدر العالى الدقة

رسالة

توطئة للحصول علي درجة الدكتوراة في الأمراض الصدرية معدمة من

🗌 أسامة محمد محمود محمد/الطبيب

بكالوريوس الطب و الجراحة - ماجستير الأمراض الصدرية

تحت إشراف

□أد/ طاهرعبد الحميد النجار

أستاذ الأمراض الصدرية كلية الطب- جامعة عين شمس

أد/ إيمان حسن السيد جلال

أستاذ الأمراص الصدرية كلية الطب- جامعة عين شمس

د/ اشرف عادل جمعة \Box

أستاذ مساعد الأمراض الصدرية كلية الطب- جامعة عين شمس كلية الطب جامعة عين شمس

سورة البقرة الآية: ٣٢

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Dr. Taher Abd El Hamid El Naggar,** Professor of Chest Diseases, Ain Shams University, for his close supervision, valuable instructions, continuous help, patience, advices and guidance. He has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I wish to express my great thanks and gratitude to **Prof. Dr. Iman Hassan El Sayed Galal,** Professor of Chest Diseases,

Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr. Ashraf Adel Gomaa**, Assistant Professor of Chest Diseases, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues, for their valuable help and support.

Finally, I would present all my appreciations to my patients without them, this work could not have been completed.

Contents

Subjects Page
• List of AbbreviationsI
• List of table III
• List of FiguresV
• Introduction 1
• Aim of the Work 3
Review of literature:
Chapter 1: Diffuse Parenchymal Lung Diseases 4
Chapter 2: High Resolution Computed Tomography 44
Chapter 3: Chest Ultrasonography Overview 64
• Patients And Methods80
• Results91
• Discussion106
• Summary115
• Conclusion118
• Recommendation119
• References120
Arabic Summary

List of Abbreviations

6MWD : 6-minute walk distance 6MWT : 6-minute walk test

AIP : Acute Interstitial Pneumonia AIS : Alveolar-Interstitial Syndrome

ANA : Anti-Nuclear Antibody

ANCA : Anti-Nuclear Cytoplasmic Antibody anti-CCP : anticyclic Citrullinated peptide

ARDS : Acute Respiratory Distress Syndrome

ASS : Ant Synthetase Syndrome
ATS : American Thoracic Society
BAL : Broncho Alveolar Lavage

BLA : B Line Artifact

BOS : Bronchiolitis Obliterans Syndrome

COHb : carboxy hemoglobin

COPD: Cryptogenic Organizing Pneumonia
COPD: Chronic Obstructive Pulmonary Disease

CPK : Creatine Phosphokinase
CTD : Connective Tissue Disease
DAD : Diffuse Alveolar Damage

DIP : Desquamative Interstitial Pneumonia

DLco : Diffuse Lung Capacity for Carbon Monoxide

DPLD : Diffuse Parenchymatous Lung Disease

EBV : Epstein-Barr virus ECG : Electro Cardio Graph

ELMOD2 ELMO Domain Containing 2 gene

gene

ERS: European Respiratory Society
ESR: Erythrocyte Sedimentation Rate

EVLW : Extra Vascular Lung Water
FEV1 · Forced Expiratory Volume during first second

FIO₂: Fraction Inspired of oxygen FVC: Forced Vital Capacity

GER : Gastro Esophageal Reflux

H&E: Hemotoxin & Eosin

Hb: Hemoglobin

&List of Abbreviations

HP : Hypersensitivity Pneumonitis

HRCT: High Resolution Computed Tomography

IIP : Idiopathic Interstitial Pneumonia

IL : Interleukin

ILD : Interstitial Lung Disease

IPF : Idiopathic Pulmonary Fibrosis
 LAM : Lymph-Angio-Leiomatosis
 LCH : Langerhans Cell Histiocytosis
 LIP : Lymphoid Interstitial Pneumonia

LIS : Lung Intercostal Space

MCP joints
 Meta Carpo Phalangeal joints
 MEF 25
 Mean Expiratory Flow 25
 MEF 50
 Mean Expiratory Flow 50
 MEF 75
 Mean Expiratory Flow 75
 MMP
 Matrix Metalloproteinase

MMRC : Modified Medical Research Council NSIP : Non-Specific Interstitial Pneumonia

OP : Organizing Pneumonia

Pao₂ : Partial pressure of arterial oxygen

PEF : Peak Expiratory Flow

PPFE : Pleuro-parenchymal Fibro elastosis

RB : Respiratory Bronchiolitis

RB-ILD Respiratory Bronchiolitis Interstitial Lung Disease

RF : Rheumatoid Factor
RV : Residual Volume
SFTPA2 : surfactant protein A2

SP₀₂: peripheral oxygen saturation

SSc : Systemic Sclerosis
TLC : Total Lung Capacity

UIP : Usual Interstitial Pneumonia
ULCs : Ultra-sound Lung Comets

US : Ultra Sound VC : Vital Capacity

∠List of Table

List of Table

Tab. No.	Subject	Page
Table (1)	Classification of diffuse parenchymal lung disease (DPLD)	6
Table (2)	Revised ATS/ERS classification of idiopathic interstitial pneumonias (IIPs) 2013	7
Table (3)	Histopathological criteria for UIP pattern	12
Table (4)	High-resolution computed tomography criteria for UIP pattern	14
Table (5)	Histologic features of Non-Specific Interstitial Pneumonia	22
Table (6)	Clinical settings associated with Organizing Pneumonia pattern	27
Table (7)	Histologic features of Organizing Pneumonia pattern	28
Table (8)	Histologic features of Diffuse Alveolar Damage	31
Table (9)	Clinical settings associated with Diffuse Alveolar Damage	32
Table (10)	Histologic features of Desquamative Interstitial Pneumonia	38
Table (11)	Histologic features of Lymphoid Interstitial Pneumonia	41
Table (12)	Modified Medical Research Council dyspnea scale	81
Table (13)	Selected sociodemographic characteristics of patients	91
Table (14)	Radiological findings of included patients	92
Table (15)	Chest US findings; Pleural line thickening vs. HRCT chest findings (ground glass, reticular infiltrations, cystic changes, traction bronchiectasis)	92
Table (16)	Chest US findings; Sub pleural alterations vs. HRCT chest findings (ground glass, reticular infiltrations, cystic changes, traction bronchiectasis)	93
Table (17)	Chest US findings; B lines with spacing less than 3mm vs. HRCT chest findings (ground glass, reticular infiltrations, cystic changes, traction bronchiectasis)	94

∠List of Table

Tab. No.	Subject	Page
Table (18)	Chest US findings; B lines with spacing less than 7mm vs. HRCT chest findings (ground glass, reticular infiltrations, cystic changes, traction bronchiectasis)	95
Table (19)	Chi-square Analysis between chest US findings and DLco	96
Table (20)	Chi-square Analysis between Chest US findings and MMRC Dyspnea scale	97
Table (21)	comparison between pulmonary function test (simple spirometry) among patients with & without pleural line thickening	98
Table (22)	Comparison between pulmonary function test (simple spirometry) among patients with & without sub-pleural alterations	99
Table (23)	comparison between pulmonary function test (simple spirometry) among patients with & without B lines spacing less than 3mm	100
Table (24)	Comparison between pulmonary function test (simple spirometry) among patients with & without B lines spacing less than 7 mm	101
Table (25)	Comparison between chest US findings and SPo2 before 6min walk test	102
Table (26)	Comparison between chest US findings and distance walked in meters during 6min walk test	103
Table (27)	Comparison between chest US findings and SPo2 after 6min walk test	103

€List of Figures

List of Figures

Fig. No.	Subject	Page
Fig. (1)	Algorithm for diagnosis of IPF	17
Fig. (2)	Schematic explanation of the phenomenon of	79
	resonance which generates the formation of the	
	comet-tail artifact on the screen.	
Fig. (3)	Mindray M7 (china)	83
Fig. (4)	Master Screen PFT (Germany)	84
Fig. (5)	Master Screen PFT (Germany)	86
Fig. (6)	Pleural line thickening by chest US	104
Fig. (7)	Sub-pleural alteration by chest US	104
Fig. (8)	B lines less with spacing less than 3 mm by chest	105
	US	
Fig. (9)	B lines with spacing less than 7 mm by chest US	105

ABSTRACT

Aim: This study was designed to recognize the sonographic features of interstitial lung diseases (ILD). And comparison of these features with the functional and radiological parameters of the disease were assessed.

Patients and methods: fifty-one patients with ILD were included; each patient underwent high resolution CT (HRCT), transthoracic sonography (TS), spirometry, DLco, 6-minute walk test with oxygen saturation assessment & MMRC dyspnea scale.

Results: significant statistical difference between patients with or without pleural line thickening in chest U/S as regard cystic changes in HRCT, statistical difference between patients with or without subpleural alterations as regard traction bronchiectasis in HRCT chest. significant statistical difference was found between patients with or without B lines with spacing less than 3 mm in chest U/S as regard ground glass in HRCT chest (p<0.001). significant statistical difference was found between patients with or without B lines with spacing less than 7 mm in chest U/S as regard ground glass (p=0.002), reticular infiltration (p=0.012) & traction bronchiectasis (p=0.019) in HRCT chest. As regard US chest findings & PFT: significant statistical difference between patients with or without pleural line thickening in chest U/S as regard the different severity grading of **DLco** (p=0.008); significant statistical difference between patients with or without pleural line thickening in chest U/S as regard FEV1 (p=0.015 & FVC (p=0.009).

Conclusion: TS can be used as an additional imaging method for assessment of ILD and as a marker to estimate the severity of disease.

Key words: interstitial lung disease, Transthoracic sonography, HRCT, pleural line, B lines

Introduction

Diffuse parenchymal lung disease (DPLD) represents a considerable challenge to physicians. According to the multidisciplinary consensus of the American Thoracic Society and the European Respiratory Society 2002, DPLD may be divided into DPLD of known cause (e.g., collagen vascular disease), idiopathic interstitial pneumonias (idiopathic and non-idiopathic pulmonary fibrosis), granulomatous DPLD (e.g., sarcoidosis), and other forms of DPLD (*Reibig and Kroegel*, 2003).

Idiopathic Interstitial Pneumonias (IIPs) make up a heterogeneous group of diseases, which are collectively, included in the umbrella term "Interstitial Lung Diseases (ILDs)". In 2002, the ATS/ERS multidisciplinary panel proposed a classification of IIPs that comprises clinicpathological entities such as Idiopathic Pulmonary Fibrosis (IPF). Nonspecific Interstitial Pneumonia (NSIP), Respiratory Bronchiolitis-associated Interstitial Lung Disease (RBILD), Cryptogenic Organizing Pneumonia (COP), Acute Interstitial Pneumonia (AIP), Desquamative Interstitial Pneumonia (DIP) and lymphoid interstitial pneumonia (LIP) (ATS/ERS, 2002).

High-resolution computed tomography (HRCT) may substantially narrow the differential diagnosis for most cases with clinically suspected interstitial lung disease (ILD). Sometimes, HRCT may also provide a confident diagnosis without the need of the surgical biopsy. Furthermore, HRCT can quantify the extent of lung abnormalities and be used to make up composite indexes that better estimate disease severity and prognosis (Sumikawa et al, 2008).

The role of lung ultrasound (US) in the assessment of a variety of pulmonary conditions has been reported. Only recently has it been proposed as criterion validity for the assessment of ILD in patients compared with HRCT as the concurrent "gold standard". The US assessment of ILD is determined by the detection and quantification of B-lines, which consist of tails generated by the reflection of the US beam from thickened sub-pleural interlobar septa detectable in between the lung intercostal spaces (LIS) (*Sperandeo et al*, 2009).

Aim of the work

The objective of this work is to investigate the role of transthoracic sonography in assessment of Interstitial Lung Diseases in comparison with High Resolution Chest Computed Tomography.

Diffuse Parenchymal Lung Diseases

Diffuse parenchymal lung disease (DPLD) comprises a number of clinical disorders that affect the alveoli, alveolar septa, respiratory bronchioli, blood vessels, lymph vessels, i.e. the pulmonary parenchyma. These disorders are caused by known agents, idiopathic, granulomatous or rare (*Peroš-Golubičić & Sharma*, 2006).

The known causes are diverse inorganic agents: leading to pneumoconiosis (asbestos, silica, etc.), organic: causing hypersensitivity pneumonitis (farmer's lung, bird fancier's lung, etc.), drugs, irradiation, toxic gases and fumes, bacteria, fungi, viruses, protozoa, and parasitic infections or infestations. When treating a patient with DPLD the clinician must carry out a detailed occupational and environmental history (*Robalo et al, 2011*).

Idiopathic interstitial pneumonias according to new classification comprise of several entities, among them there is a new entity called pleuropulmonary fibro elastosis. Also, of great help to the practicing physicians is the inclusion of a category of unclassifiable group of DPLD. The everyday life experience resulted in this change, because almost 30% of these diseases even after the most complete and thorough examination, stay unclassifiable (*William et al, 2013*).