Immunohistochemical expression of fibronectin by stromal and epithelial cells in carcinoma of the female breast

Thesis

Submitted for partial fulfillment of MSc. degree in Pathology

Submitted by

Passant Essam El Din Ahmed

M.B, B.CH; Cairo University

Supervised by:

Prof. Dr. Fahima Mohamed Habib

Professor of Pathology Faculty of Medicine Cairo University

Assistant. Prof. Mohammed Faisal Darweesh

Assistant Professor of Pathology Faculty of Medicine Cairo University

Dr. Lubna Omar El Farouk Abdel Salam

Lecturer of Pathology Faculty of Medicine Cairo University

2015

ACKNOWLEDGMENT

My foremost and greatest thankfulness to Allah.

I would like to express my sincere gratitude to *Prof. Dr. Fahima Mohamed Habib*, Professor of Pathology, Faculty of medicine, Cairo University, for her close supervision, guidance, encouragement, precious remarks and great effort.

I am very grateful to *Prof. Dr. Mohammed Faisal Darweesh*, Assistant Professor of Pathology, Faculty of medicine, Cairo University who devoted a great deal of his time to provide me with his kind guidance and valuable advices.

I would like to sincerely thank *Dr. Lubna Omar El-farouk Abdel Salam*, Lecturer of Pathology, Faculty of Medicine, Cairo University for her friendly attitude and encouragement. She saved no time and effort in helping me and providing me with precious remarks.

All the respect and appreciation to *Prof. Dr. Abdallah Mahmoud Khalil*, Professor and previous head of Pathology department, Faculty of medicine, Cairo University, for his unlimited support and valuable advices throughout this work.

Many thanks to my professors and colleagues who contributed to this work, whether with technical assistance, an advice, an idea, a book or even single word of encouragement.

No words can express my gratitude to my precious kind mother and dear sister, without their motivation, support and encouragement, this work would have never seen light.

Finally, I would like to dedicate this work with all love to the soul of my dear father, may his soul rest in peace

CONTENTS

Item	Page
Abstract	1
Introduction	2
Aim of work	4
Review of literature	
I. Epidemiology	5
II. Etiology and risk factors	7
III. Pathogenesis	24
IV. Classification	32
V. Staging	51
VI. Prognostic factors	54
VII. Epithelial mesenchymal transition	62
VIII. Tumor microenviroment	75
IX. Fibronectin	80
Materials & Methods	
Results	87
Figures	129
Discussion	146
Summary	159
Conclusions & Recommendations	
References	
Arabic summary	

LIST OF ABBREVIATIONS

ACC Acinic cell carcinoma

ADH Atypical ductal hyperplasia

AIs Aromatase inhibitors

AJCC American Joint Committee on Cancer

AKT Serine/threonine kinase

ALDH1 Aldehyde dehydrogenase

ALH Atypical lobular hyperplasia

AMC Atypical medullary carcinomas

AR Androgen receptor

ATM Ataxia Telangiectasia mutant gene

BBD Benign breast diseases

BC Breast cancer

BCL2 B-cell Lymphoma-2BM Basement membrane

BMI Body mass index

BRCA Breast cancer gene

BTICs Breast tumor initiating cancer cells

CAFs Cancer associated fibroblasts

CBC Contralateral breast cancer

CBS Conservative breast surgery

CCL7 Chemokine ligand 7

CDH1 Epithelial cadherin

CHEK2 Check point kinase 2

CK Cytokeratin

COX2 Cyclo-oxygenase 2
CSC Cancer stem cells

CXCL12 Chemokine ligand 12

DAB Diaminobenzidine

DCIS Ductal carcinoma insitu

DFS Disease free survival

DM Diabetes mellitus

DNA Deoxyribonucleic Acid

DTCs Disseminated tumor cells

E-cadherin Epithelial-cadherin

ECM Extracellular matrix

EDA, EDB Extra domain-A, Extra domain-B

E-FN Epithelial fibronectin

EGFR Epidermal growth factor receptor

EMA Epithelial membrane antigen

EMT Epithelial-mesenchymal transition

ER Estrogen receptor

ERK 1/2 Extracellular signal-regulated kinase 1/2

EU European Union

FAK Focal adhesion kinase

FEA Flat epithelial atypia

FGF Fibroblast growth factor

FLSpCC Fibromatosis-like spindle-cell metaplastic carcinoma

FN Fibronectin

FOX Forkhead box

GCDFP- 15 15-kDa Glycoprotein of cystic breast disease

GSC Homeobox protein goosecoid

GSK-3b Glycogen synthase kinase-3b

GTPase Guanosine triphosphatase

H/E (Spl) Hairy and enhancer of split

HCG Human Chorionic Gonadotropin

HER2 Human Epidermal growth factor receptor 2

HGF Hepatocyte growth factor

HIF1 α hypoxia-inducible factor-1 α

HPF High Power field

HRT Hormone replacement therapy

IBC Inflammatory breast cancer

IBIS International breast cancer intervention

ICC Invasive cribriform carcinoma

IDC-NOS Invasive ductal carcinomas not otherwise specified

IDC-NST Invasive ductal carcinomas no special type

IGF-1 Insulin-like growth factor-I

IHC Immunohistochemistry

IL Interleukin

ILC Invasive lobular carcinoma

ILK Integrin-linked kinase

IMPC Invasive micropapillary carcinoma

IS Immunoreactivity score

ITGA6 Alpha 6 integrin gene

JAK Janus kinase

L.N.s Lymph nodes

LCIS Lobular carcinoma insitu

LGAS Low-grade adeno-squamous carcinoma

LN Lobular neoplasia

LNR Lymph node ratio

LOXs Lysyl oxidases

LTBP-1 Latent Transforming Growth Factor-β binding protein-1

LVI Lymphovascular invasion

MAPK Mitogen-associated protein kinase

MBC Metaplastic breast carcinomas

MC Medullary carcinoma

MD Mammographic density

MEC Mucoepidermoid carcinoma

MET Mesenchymal—epithelial transition

MIC Mononuclear inflammatory cell

MMP Matrix metalloproteinases

MRI Magnetic resonance imaging

MRM Modified radical mastectomy

MSCs Mesenchymal stem cells

nBSCs Normal breast stem cells

N-cadherin Neural cadherin

NE Neuroendocrine

nF-кВ Nuclear factor-кb

NGS Nottingham Grading System

NPD Non-proliferative disease

OC Oncocytic carcinoma

OCPs Oral contraceptive pills

OGCs Osteoclast-like stromal giant cells

OS Overall survival

PALB2 Partner and localizer of BRCA2

PAS Periodic acid–Schiff

PD Proliferative disease

PDGF Platelet-derived growth factor

PI3K Phosphatidylinositol-3-kinase

PLCIS Pleomorphic lobular carcinoma insitu

PR Progesterone receptor

PRL Prolactin

PTEN Phosphate and tensin homology

RhoA Ras homolog gene family

RNA Ribonucleic acid

RTKs Receptor tyrosine kinases

RT-PCR Reverse Transcription—Polymerase Chain Reaction

SC Sebaceous carcinoma

SCBC Spindle cell breast carcinoma

SCC Squamous cell carcinoma

SD Standard deviation

SERMs Selective estrogen receptor modulators

S-FN Stromal Fibronectin

SHBG Sex hormone binding globin

SPSS Statistical Package for the Social Science

SRCC Signet ring cell carcinoma

STAT3 Signal transducer and activator of transcription 3

TAMs Tumor-associated macrophages

TC Tubular carcinoma

TCF3 Transcription Factor 3

TGF- β Transforming growth factor- β family

TLR Toll-like receptor

TN Triple Negative

TNF- α Tumor necrosis factor- α

TNM Tumor – Nodes - Metastasis.

TP53 Tumor protein 53

UDH Usual ductal hyperplasia

UK RCPath Royal College of Pathologists

VEGF Vascular endothelial growth factor

WHO World health organization

ZEB Zinc-finger E-box-binding homeobox

LIST OF FIGURES

No.	Title	Page
1	Functional consequences of a type III epithelial-to-mesenchymal transition.	67
2	Signaling pathways regulating EMT.	71
3	Normal renal tissue positive for fibronectin (Control) (X 100).	129
4	Invasive duct carcinoma of no special type Grade II (H&E X 100).	129
5	Invasive duct carcinoma of no special type Grade II (H&E X 100).	130
6	Invasive duct carcinoma of no special type Grade II showing strong positive E-FN expression (X 200).	130
7	Invasive duct carcinoma of no special type Grade II showing Negative E-FN expression (X 200).	131
8	Intraduct carcinoma showing comedo (black arrow) and solid (blue arrow) types (H&E X 100 original magnification).	131
9	Intraduct carcinoma showing cribriform type (arrows) (H&E X 100 original magnification).	132
10	Intraduct carcinoma, comedo type showing strong Positive E-FN expression (X 40 original magnification).	132
11	Intraduct carcinoma, cribriform type, showing Negative E-FN expression (X 100 original magnification).	133
12	Invasive lobular carcinoma Grade II (H&E X 100 original magnification).	133
13	Invasive lobular carcinoma Grade II showing moderate Positive E-FN expression (X 200 original magnification).	134
14	Invasive lobular carcinoma Grade II showing Negative E-FN expression (X 200 original magnification).	134
15	Acini distended by cells having lobular neoplasia features in the form of LCIS with obliteration of the lumen (black arrows) and ALH with preserved lumen (blue arrows) (H&E X 100 original magnification).	135
16	Insitu lobular carcinoma showing moderate Positive E-FN expression (X 100 original magnification).	135
17	Mucinous carcinoma Grade II, arrows pointing to mucin lakes (H&E X 100 original magnification).	136
18	Mucinous carcinoma Grade II showing Negative E-FN expression (X 100 original magnification).	136

19	Invasive papillary carcinoma Grade II showing mainly solid type (arrows pointing to fibrovascular cores) (arrow) (H&E X 40 original magnification).	137
20	Invasive papillary carcinoma Grade II showing moderate Positive	137
21	E-FN expression (X 100 original magnification). Invasive micropapillary carcinoma Grade II (H&E X 100 original magnification).	138
22	Invasive micropapillary carcinoma Grade II showing Strong E-FN expression (X 100 original magnification).	138
23	Invasive mixed ductal and lobular carcinoma Grade II showing ductal component (Black arrow) and lobular component (Blue arrows) (H&E X 100 original magnification).	139
24	Invasive mixed ductal and lobular carcinoma Grade II with ductal component (Black arrow) and lobular component (red arrow) showing Negative E-FN expression (X 100 original magnification).	139
25	Invasive duct carcinoma Grade III showing marked nuclear anaplasia (Arrows) (H&E X 200 original magnification).	140
26	Invasive duct carcinpma Grade III showing strong positive E-FN expression (X 400 original magnification).	140
27	Strong S-FN expression in the form of coarse FN-positive strands (arrows) (X 100 original magnification).	141
28	Moderate S-FN expression in the form of fine FN-positive strands (X 100 original magnification).	141
29	Mild S-FN expression in the form of few scattered FN-positive strands (X 100 original magnification	142
30	Negative S-FN expression (X 100 original magnification).	142
31	Case showing Positive LVI in the peritumoral area (H&E X 400 original magnification).	143
32	Case showing Positive LVI in the peritumoral area (H&E X 400 original magnification).	143
33	Intense peritumoral lymphocytic infiltrate (Arrows) (H&E X 100 original magnification).	143
34	Mild peritumoral lymphocytic infiltrate (Arrows) (H&E X 200 original magnification).	144
35	A case of stroma rich Invasive duct carcinoma (H&E X 40 Original magnification).	144
36	A case of stroma poor Invasive duct carcinoma (H&E X 100 original magnification).	145

LIST OF TABLES

No.	Title	Page
1	Features of molecular subtypes of breast cancer.	31
2	TNM staging system of the breast cancer.	51
3	Anatomic stage/prognostic groups of breast cancer.	53
4	Histologic grading of breast cancer.	56
5	Age in the studied cases.	87
6	Histologic types in the studied cases.	88
7	Prognostic groups/ anatomical stages in the studied cases.	90
8	Relation between age (in years) and the E-FN expression.	95
9	Relation between the histologic types and E-FN expression.	96
10	Relation between the histologic grade and E-FN expression.	97
11	Relation between the T stage and E-FN expression.	98
12	Relation between the N stage and E-FN expression.	99
13	Relation between the prognostic stages and E-FN expression.	100
14	Relation between the insitu component and E-FN expression.	101
15	Relation between ER status and E-FN expression.	102
16	Relation between PR status and E-FN expression.	103
17	Relation between HER2 over-expression and E-FN expression.	104
18	Relation between Ki-67 index and E-FN expression.	105
19	Relation between the breast cancer subtypes and E-FN expression.	106
20	Relation between multiplicity of masses and E-FN expression.	107
21	Relation between the presence of LVI and the E-FN expression.	108
22	Relation between extent of peri-tumoral lymphocytic infiltration	109
	and E-FN expression.	
23	Relation between the amount of tumor associated stroma	110
	(desmoplasia) and E-FN expression.	
24	Relation between age (in years) and S-FN expression.	112
25	Relation between Histologic subtypes and S-FN expression.	113
26	Relation between Histologic grade and S-FN expression.	114
27	Relation between the T stage and S-FN expression.	115
28	Relation between the N stage and S-FN expression.	116
29	Relation between the prognostic stages and S-FN expression.	117
30	Relation between the presence of insitu component and S-FN	118
21	expression.	119
31	Relation between ER status and S-FN expression.	120
32 33	Relation between PR status and S-FN expression. Polation between HEP2 over expression and S-FN expression.	121
33	Relation between HER2 over-expression and S-FN expression.	121
34	Relation between Ki-67 index and S-FN expression.	144

35	Relation between the molecular subtypes and S-FN expression.	123
36	Relation between the multiplicity of masses and S-FN expression.	124
37 38	Relation between the presence of LVI and S-FN expression. Relation between the extent of lymphocytic infiltration and S-FN expression.	125 126
39 40	Relation between desmoplasia and S-FN expression. Relation between S-FN expression and E-FN expression	127 128

LIST OF GRAPHS

No.	Title	Page
1	Histologic types in the studied cases.	88
2	Histologic grade in the studied cases.	89
3	T stage in the studied cases.	89
4	N Stage in the studied cases.	90
5 6	Insitu component in the studied cases. ER status in the studied cases.	91 91
7	PR status in the studied cases.	91 91
8	HER2 overexpression in the studied cases.	92
9	Ki-67 proliferation index in the studied cases.	92
10	Molecular subtypes of the studied cases.	92
11	Multiplicity of masses in the studied cases.	93
12	Lymphovascular invasion in the studied cases.	93
13	Extent of peri-tumoral lymphocytic infiltration in the studied cases.	94
14	Tumor associated stroma (desmoplasia) in the studied cases.	94
15	Epithelial fibronectin immunhistochemical expression in the studied cases.	95
16	Relation between the histologic types and E-FN expression.	96
17	Relation between the histologic grade and E-FN expression.	97
18	Relation between the T stage and E-FN expression.	98
19	Relation between the N stage and E-FN expression.	99
20	Relation between the prognostic stages and E-FN expression.	100
21	Relation between the insitu component and E-FN expression.	101
22	Relation between ER status and E-FN expression.	102
23	Relation between PR status and E-FN expression.	103
24	Relation between HER2 over-expression and E-FN expression.	104
25	Relation between Ki-67 index and E-FN expression.	105
26	Relation between the breast cancer subtypes and E-FN expression.	106
27	Relation between multiplicity of masses and E-FN expression.	107
28	Relation between the presence of LVI and the E-FN expression.	108

29	Relation between extent of peri-tumoral lymphocytic infiltration	109
	and E-FN expression.	
30	Relation between the amount of tumor associated stroma	110
	(desmoplasia) and E-FN expression.	
31	Stromal fibronectin immunohistochemical expression in the	111
	studied cases.	
32	Relation between age (in years) and S-FN expression.	112
33	Relation between Histologic subtypes and S-FN expression.	113
34	Relation between Histologic grade and S-FN expression.	114
35	Relation between the T stage and S-FN expression.	115
36	Relation between the N stage and S-FN expression.	116
37	Relation between the prognostic stages and S-FN expression.	117
38	Relation between the presence of insitu component and S-FN	118
	expression.	
39	Relation between ER status and S-FN expression.	119
40	Relation between PR status and S-FN expression.	120
41	Relation between HER2 over-expression and S-FN expression.	121
42	Relation between Ki-67 index and S-FN expression.	122
43	Relation between the multiplicity of masses and S-FN	123
	expression.	
44	Relation between the presence of LVI and S-FN expression.	124
45	Relation between the extent of lymphocytic infiltration and S-	125
	FN expression.	
46	Relation between desmoplasia and S-FN expression.	126
	1	127
47	Relation between S-FN expression and E-FN expression	128