PRODUCTIVITY OF SUNFLOWER UNDER HEAT AND WATER STRESSES IN NEWLY RECLAIMED LANDS

By

MOSTAFA GAMAL AL-DIN IBRAHIM SOLIMAN

B.Sc. Agric. Sc., Agronomy, Ain Shams University, 2007 M.Sc. Agric. Sc., Agronomy, Ain Shams University, 2013

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

in
Agricultural Sciences
(Agronomy)

Department of Agronomy Faculty of Agriculture Ain Shams University

Approval Sheet

PRODUCTIVITY OF SUNFLOWER UNDER HEAT AND WATER STRESSES IN NEWLY RECLAIMED LANDS

By

MOSTAFA GAMAL AL-DIN IBRAHIM SOLIMAN

B.Sc. Agric. Sc., Agronomy, Ain Shams University, 2007 M.Sc. Agric. Sc., Agronomy, Ain Shams University, 2013

This thesis for Ph.D. degree has been approved by: Dr. Fawzy Sayed Abdel-Samie Prof. Emeritus of Agronomy, Faculty of Agriculture, Fayoum University. Dr. Ramadan Thabet Abdrabou Prof. Emeritus of Agronomy, Faculty of Agriculture, Ain Shams University. Dr. Hani Saber Saudy Prof. of Agronomy, Faculty of Agriculture, Ain Shams University Dr. Mohamed EL-Refaey El-Bially Prof. Emeritus of Agronomy, Faculty of Agriculture, Ain Shams University.

Date of Examination: 5/4/2018

PRODUCTIVITY OF SUNFLOWER UNDER HEAT AND WATER STRESSES IN NEWLY RECLAIMED LANDS

By

MOSTAFA GAMAL AL-DIN IBRAHIM SOLIMAN

B.Sc. Agric. Sc., Agronomy, Ain Shams University, 2007 M.Sc. Agric. Sc., Agronomy, Ain Shams University, 2013

Under the supervision of:

Dr. Mohamed EL-Refaey El-Bially

Prof. Emeritus of Agronomy, Department of Agronomy, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Hani Saber Saudy

Prof. of Agronomy, Department of Agronomy, Faculty of Agriculture, Ain Shams University.

Dr. Ibrahim Mohamed El–Metwally

Researcher Prof. of Botany, Department of Botany, National Research Centre.

ABSTRACT

Mostafa Gamal AL-Din Ibrahim Soliman Shahin: Productivity of Sunflower under Heat and Water stresses in Newly Reclaimed lands. Unpublished Ph.D. Thesis, Department of Agronomy, Faculty of Agriculture, Ain Shams University, 2018.

To investigate the sowing dates, irrigation levels, and ascorbic acid (AsA) and their interaction effects on sunflower, Sakha 53 cultivar, two field experiments were conducted in the seasons of 2014 and 2015 in the Experimental Station of Agricultural Production and Research Station, National Research Centre, El Nubaria region, El Behaira Governorate, Egypt. The results revealed that yield, yield attributes and water use effeicincy (WUE) were significantly decreased as sowing date was earlier or delayed than the mediate sowing date (May 21), except head diameter for earlier sowing date was not significant compared as mediate sowing date. Increasing the amount of irrigation levels up to 100% of water requirment enhanced head diameter, head weight, seed weight head⁻¹, seed index, seed yield fed⁻¹ and WUE. Plants grown in untreated plots with AsA exhibited the lowest values for head diameter, head weight, seed weight head⁻¹, seed index, seed yield fed⁻¹, oil yield fed⁻¹ and WUE.

The maximum increases in Ch a, Ch b, and Ch a + Ch b contents were achieved through sowing sunflower in May x ET_{100%} x AsA₍₊₎. The distinctive practice in enhancing growth traits was sowing sunflower in May 21 x supplying plants with ET_{100%} x AsA spraying. The maximum values of head diameter, head weight, seed weight head⁻¹, seed index, seed yield fed⁻¹, oil yield fed⁻¹ and WUE are resulted from sowing sunflower on 21st May in conjunction with both well-watered treatment (ET_{100%}) x AsA₍₊₎. Sowing sunflower delaying (in 21st June) or earlier (in 21st April) each in combination with 70% of water requirment without spraying ascorbic acid recorded the lowest values of oil% and iodine.

Keywords: Sunflower, Sowing dates, Irrigation levels, Ascorbic acid, Seed yield, Oil yield.

ACKNOWLEDGEMENT

First of all: Thanks to Allah for offering me the strength to fulfill this hard mission

I'm deeply indebted to **Professor Dr. Mohamed EL-Refaiy El-Bially,** Professor Emeritus of Agronomy, Faculty of Agriculture, Ain Shams University for suggesting the current study, supervision and continuous guidance. Also, I would like to thank him for his kind support and revision of the manuscript of this thesis.

I'm deeply indebted to **Dr. Hani Saber Saudy**, Professor of Agronomy, Faculty of Agriculture, Ain Shams University for his kind supervision, patriotic patience, energetic guidance, valuable advices in preparing and for writing and revision of the manuscript. I will always remember his generous help.

I'm grateful to **Dr. Ibrahim Mohamed El–Metwally,** Professor of Botany, Botany Department, National Research Centre for his supervision, great support and continued help during the preparation of this work.

Thanks are extended to all staff members and colleagues of Department of Agronomy, Faculty of Agriculture, Ain Shams University and also to my family for their contentious efforts and encouragement.

Finally, I am indebted as gift to my **parents** for their continuous encouragement and praying for me.

CONTENTS

	Page
LIST OF TABLES	II
LIST OF FIGURES	V
INTRODUCTION	1
REVIEW OF LITERATURE	5
1. Effect of sowing dates.	5
1.1. Growth and physiological traits	6
1.2. Yield and its components	9
1.3. Chemical traits	14
2. Effect of irrigation levels	15
2.1. Growth and physiological traits	15
2.2. Yield and its components	20
2.3. Chemical traits	29
3. Effect of antioxidants	32
3.1. Growth and physiological traits	32
3.2. Yield and its components	34
3.3. Chemical traits	35
4. Interactions	36
MATERIALS AND METHODS	40
RESULTS AND DISCUSSION	51
SUMMARY	93
REFERENCES	99
ARABIC SUMMARY	

LIST OF TABLES

		Page
Table 1	Seasonal irrigation quantities under different water	
	level treatments for sunflower cultivar Sakha 53	
	under El Nubaria region experimental conditions in	
	2014 and 2015 seasons	43
Table 2	Mechanical and chemical analysis of soil of the	
	experimental station of Agricultural Production and	
	Research Station, National Research Centre, El	
	Nubaria region, El Behaira Governorate,	
	Egypt	44
Table 3	Average monthly climatic data of El Nubaria	
	location during sunflower growing seasons of 2014	
	and 2015	45
Table 4	Influence of sowing date, irrigation level and	
	ascorbic acid on sunflower physiological traits: Ch a,	
	Ch b, Ch a + Ch b, carotenoids (mg g-1 fresh wt),	
	and proline (µg g-1 fresh wt.)	54
Table 5	Influence of sowing date and irrigation level	
	interaction on sunflower physiological traits: Ch a,	
	Ch b, Ch a + Ch b, carotenoids (mg g-1 fresh wt),	
	and proline (µg g-1 fresh wt.)	56
Table 6	Influence of sowing date and ascorbic acid	
	interaction on sunflower physiological traits: Ch a,	
	Ch b, Ch a + Ch b, carotenoids (mg g-1 fresh wt),	
	and proline (µg g–1 fresh wt.)	58

		Page
Table 7	Influence of irrigation level and ascorbic acid	
	interaction on sunflower physiological traits: Ch a,	
	Ch b, Ch a + Ch b, carotenoids (mg g-1 fresh wt),	
	and proline (µg g–1 fresh wt.)	58
Table 8	Influence of the second order interaction among	
	sowing date, irrigation level and ascorbic acid on	
	sunflower physiological traits: Ch a, Ch b, Ch a + Ch	
	b, carotenoids (mg g-1 fresh wt), and proline (µg g-	
	1 fresh wt.)	59
Table 9	Sunflower growth traits as influenced by sowing	
	date, irrigation and ascorbic acid	66
Table 10	Sunflower growth traits as influenced by sowing date	
	and irrigation level interaction	68
Table 11	Sunflower growth traits as influenced by sowing date	
	and ascorbic acid interaction	70
Table 12	Sunflower growth traits as influenced by irrigation	
	water level and ascorbic acid interaction	70
Table 13	Sunflower growth traits as influenced by the	
	interaction among sowing date, irrigation levels and	
	ascorbic acid	71
Table 14	Sunflower yield, yield attributes, and water use	
	efficiency (WUE) as influenced by sowing date,	
	irrigation level and ascorbic acid	77
Table 15	Sunflower yield, yield attributes, and water use	
	efficiency (WUE) as influenced by sowing date and	
	irrigation interaction	80

		Page
Table 16	Sunflower yield, yield attributes, and water use	
	efficiency (WUE) as influenced by sowing date and	
	ascorbic acid interaction	81
Table 17	Sunflower yield, yield attributes, and water use	
	efficiency (WUE) as influenced by interaction	
	irrigation and ascorbic acid interaction	82
Table 18	Sunflower yield, yield attributes, and water use	
	efficiency (WUE) as influenced by the second order	
	interaction among sowing date, irrigation and	
	ascorbic acid	83
Table 19		03
Table 17		97
	by sowing date, irrigation level and ascorbic acid	87
Table 20	Chemical traits of sunflower seed oil as influenced	
	by sowing date and irrigation level interaction	89
Table 21	Chemical traits of sunflower seed oil as influenced	
	by interaction sowing date and ascorbic acid	
	interaction	89
Table 22	Chemical traits of sunflower seed oil as influenced	
	by interaction sowing date and ascorbic acid	
	interaction	90
Table 23	Chemical traits of sunflower seed oil as influenced	
	by the second order interaction among sowing date,	
	irrigation and ascorbic acid.	91
	1111 G 4 11 0 11 4 11 4 4 1 0 0 1 0 1 0 1 0 1	<i></i>