

Light Charged Particles Induced Nuclear Reactions on some Medium Weight Nuclei for Practical Applications

Thesis Submitted for the Partial Fulfillment of Master Degree of Science (Nuclear Physics)

By

Bahaa Mohamed Ali Mohamed Mohsena

B.Sc. in Physics 2004

(Physics Department- Faculty of Science- Al Azhar University)

To

Physics Department- Faculty of Science

Ain Shams University

Egypt

2011

Light Charged Particles Induced Nuclear Reactions on some Medium Weight Nuclei for Practical Applications

Thesis Submitted for the Partial Fulfillment of Master Degree of Science (Nuclear Physics)

By

Bahaa Mohamed Ali Mohamed Mohsena

BSc. in Physics 2004

Supervised by

Prof.Dr. Samir Yousha El Kameesy

Prof. of Nuclear Physics Physics Department Faculty of Science Ain Shams University

Prof.Dr. Usama Seddik Abd Alghafar

Prof. of Nuclear and Particle Physics Experimental nuclear Physics Department Nuclear Research Center (Cyclotron Project) Atomic Energy Authority

Dr. Mogahed Ibrahim Al-Abyad

Lecturer of Nuclear Physics
Experimental nuclear Physics Department
Nuclear Research Center (Cyclotron Project)
Atomic Energy Authority

(2011)

Approval Sheet

Light Charged Particles Induced Nuclear Reactions on some Medium Weight Nuclei for Practical Applications

Name of Candidate

Bahaa Mohamed Ali Mohamed Mohsena

B.Sc. in Physics 2004 (Physics Department- Al Azhar University)

Supervised by

Signature

Prof.Dr. Samir Yousha El Kameesy

Prof.Dr. Usama Seddik Abd Alghafar

Dr. Mogahed Ibrahim Al Abyad

Approval Stamp

Date of Approval

/ / 2011

/ / 2011

Approval of Faculty Council Approval of University Council

/ / 2011

/ / 2011

M.Sc. Thesis

Name: Bahaa Mohamed Ali Mohamed Mohsena

Title: "Light Charged Particles Induced Nuclear Reactions on some

Medium Weight Nuclei for Practical Applications"

Degree: Master of Science (Nuclear Physics).

Supervision Committee:

Prof.Dr. Samir Yousha El Kameesy

Prof. of Nuclear Physics, Physics Department, Faculty of Science, Ain Shams University.

Prof.Dr. Usama Seddik Abd Alghafar

Prof. of Nuclear and Particle Physics, Experimental nuclear Physics Department, N.R.C. (Cyclotron Project), Atomic Energy Authority.

Dr. Mogahed Ibrahim Al Abyad

Lecturer of Nuclear Physics, Experimental nuclear Physics Department, N.R.C. (Cyclotron Project), Atomic Energy Authority.

Judgment Committee:

Prof.Dr. Samir Yousha El Kameesy

Prof. of Nuclear Physics, Physics Department, Faculty of Science, Ain Shams University.

Prof.Dr. Usama Seddik Abd Alghafar

Prof. of Nuclear and Particle Physics, Experimental nuclear Physics Department, N.R.C. (Cyclotron Project), Atomic Energy Authority.

Prof.Dr. Ibrahim Ismail Ali Bashter

Prof. of Nuclear Physics, Physics Department, Faculty of Science, Zagazig University.

Prof.Dr. Abd Allah Abd AL-Salam Mohamed

Prof. of Nuclear Physics, Physics Department, Faculty of Science, Cairo University.

جامعة عين شمسس كليسة العلسوم قسم الفيزياء

التفاعلات النووية المستحثة بالجسيمات الخفيفة المشحونة علي بعض الأنوية متوسطة الوزن للتطبيقات العملية

رسالة مقدمة من

بهاء محمد على محمد محسنة

بكالوريوس علوم فيزياء, ٢٠٠٤ (قسم الفيزياء, كلية العلوم, جامعة الأزهر)

للحصول علي درجة الماجستير في العلوم (الفيزياء النووية)

الي

قسم الفيزياء- كلية العلوم جامعة عين شمس

جامعة عين شمسس كليسة العلسوم قسم الفيزياء

التفاعلات النووية المستحثة بالجسيمات الخفيفة المشحونة على بعض الأنوية متوسطة الوزن للتطبيقات العملية

ر سالة مقدمة من

بهاء محمد على محمد محسنة

للحصول على درجة الماجستير في العلوم (الفيزياء النووية)

إشراف

ا.د./ أسامة صديق عبد الغفارد./ سمير يوشع الخميسي

استاذ الفيزياء النووية والجسيمية استاذ الفيزياء ألنووية قسم الطبيعة النووية التجريبية قسم الفيزي

(مشروع السيكلوترون) كليه العلوم مركز البحوث النووية جامعة عين شمس هبئة الطاقة الذر بـــة

د./ مجاهد ابراهيم الأبيض

مدر س الفيز باء النوو وية قسم الطبيعة النووية التجريبية (مشروع السيكلوترون) مركز البحوث النووية هيئة الطاقة الذريـــة

(2011)

جامعة عين شمسس كليسة العلسوم قسم الفيزياء

صفحة الموافقة علي الرسالة

التفاعلات النووية المستحثة بالجسيمات الخفيفة المشحونة علي بعض الأنوية متوسطة الوزن للتطبيقات العملية

رسالة مقدمة من بهاء محمد علي محمد محسنة

بكالوريوس علوم فيزياء, ٢٠٠٤ (قسم الفيزياء, كلية العلوم, جامعة الأزهر)

للحصول علي درجة الماجستير في العلوم (الفيزياء النووية)

إشراف التوقيع

ا.د./ سمير يوشع الخميسي

استاذ الفيزياء النووية قسم الفيزياء كلية العلوم جامعة عين شمس.

ا.د./ أسامة صديق عبد الغفار

استاذ الفيزياء النووية والجسيمية, مشروع السيكلوترون, هيئة الطاقة الذرية.

د./ مجاهد ابراهيم الأبيض

مدرس الفيزياء النووية, مشروع السيكلوترون, هيئة الطاقة الذرية.

ختم الإجازة

تاريخ الإجازة

2011 / /

2011 / /

مو افقة مجلس الجامعة

موافقة مجلس الكلية

2011 / /

2011 / /

جامعة عين شمسس كاليسة العلسوم قسم الفيزياء

رسالة ماجستير

اسم الطالب: بهاء محمد على محمد محسنة

عنوان الرسالة: التفاعلات النووية المستحثة بالجسيمات الخفيفة المشحونة على بعض الأنوية متوسطة الوزن للتطبيقات العملية

اسم الدرجة: درجة الماجستير في العلوم (فيزياء نووية)

لجنة الإشراف:

أ.د. سمير يوشع الخميسي

أستاذ الفيزياء النووية, قسم الفيزياء, كلية العلوم, جامعة عين شمس.

أ.د. أسامة صديق عبد الغفار

أستاذ الفيزياء النووية والجسيمية مشروع السيكلوترون هيئة الطاقة الذرية

د. مجاهد إبراهيم الأبيض

مدرس الفيزياء النووية, مشروع السيكلوترون, هيئة الطاقة الذرية.

لجنة الحكم:

أ.د. سمير يوشع الخميسي

أستاذ الفيزياء النووية, قسم الفيزياء, كلية العلوم, جامعة عين شمس.

أرد أسامة صديق عبد الغفار

أستاذ الفيزياء النووية والجسيمية مشروع السيكلوترون هيئة الطاقة الذرية

أ.د. إبراهيم اسماعيل على بشطر

أستاذ الفيزياء النووية, قسم القيزياء, كلية العلوم, جامعة الزقازيق.

أ.د. عبدالله عبدالسلام محمد

أستاذ الفيزياء النووية, قسم الفيزياء, كلية العلوم, جامعة القاهرة.

الدر اسات العليا:

تاريخ التسجيل:

موافقة مجلس الكلية:

مو افقة مجلس الجامعة:

تاريخ الإجازة: / / تاريخ المنـــح: / /

جامعة عين شمسس كليسة العلسوم قسم الفيزياء

بيانات الطالب

- اسم الطالب: بهاء محمد على محمد محسنة
- الدرجة العلمية: ماجستير العلوم في الفيزياء (فيزياء نووية)
 - القسم التابع له: الفيزياء
 - اسم الكلية: كلية العلوم
 - سنة التخرج: 2004
 - سنــة المنــح: 2011

ABSTRACT

The radioisotopes of indium, cadmium and tin have many practical and medical applications. Their standard routes for production are proton or deuteron induced reactions on natural or enriched cadmium or tin. The production via ³He induced reactions on natural or enriched cadmium was rarely discussed.

In this study ³He induced reactions on natural cadmium were measured utilizing the stacked-foil technique. The primary incident beam energy was 27 MeV extracted from the MGC-20E cyclotron, Debrecen, Hungary. The excitation functions for the reactions ^{nat}Cd(³He,x)^{115g,111m}Cd, ^{117m,g,116m,115m,114m,113m,111g,110m,g,109g,108g,107g}In and ^{117m,113g,111,110}Sn were evaluated. The data were compared with the available literature data.

Different theoretical nuclear reaction models were also used to predict the cross sections for those reactions. The used models were ALICE-IPPE, TALYS-1.2 and EMPIRE-03. The experimental data were compared also to the theoretical model calculations. The theoretical models did not describe most of the experimental results.

The isomeric cross section ratios for the isomeric pairs ^{117m,g}In and ^{110m,g}In were calculated. The isomeric cross section ratio depends on the spins of the states of the interested isomeric pair. The calculated isomeric ratios helped to identify the mechanisms of the reactions involved.

The integral yields for some medically relevant isotopes were calculated using the excitation function curves.

Contents

CONTENTS

TITLE	Page
ACKNOWLEDGEMENT	Ī
ABSTRACT	II
CONTENTS	III
LIST OF FIGURES	VI
LIST OF TABLES	VIII
SUMMARY	X
CHAPTER 1: INTRODUCTION AND LITRAT	
REVIEW	<u>OKD</u>
1.1. RADIOACTIVITY	1
1.2. ISOTOPES	2
1.2.1. PRODUCTION OF ISOTOPES	2
1.2.2. APPLICATION OF RADIOISOTOPES	3
1.3. FUNDAMENTALS OF NUCLEAR REACTIONS	5
1.3.1. Nuclear reaction energetic	7
1.3.2. REACTION THRESHOLD ENERGIES	8
1.3.3. REACTION CROSS SECTION	10
1.3.3.1. Cross section measurement	12
1.3.3.2. TARGET YIELD	15
1.3.4. REACTION CHANNELS	17
1.3.5. STOPPING POWER AND RANGE	17
1.3.6. Nuclear reaction mechanisms	22
1.3.6.1. COMPOUND NUCLEAR REACTIONS	23
1.3.6.2. DIRECT REACTIONS	25
1.3.6.3. Precompound reactions	26
1.4. BASICS OF GAMMA RAY DETECTORS	27
1.4.1. SCINTILLATION DETECTORS	28
1.4.2. Semiconductor detector	29
1.4.3. The detector efficiency	32

Contents

1.4.3.1. A	ABSOLUTE EFFICIENCY	32
1.4.3.2. I	NTRINSIC EFFICIENCY	33
1.4.3.3. R	ELATIVE EFFICIENCY	33
1.5. LITERAT	ΓURE REVIEW	34
1.6. AIM OF	THE WORK	35
CHAPTER 2	2: APPARATUS AND EXPERIMENT	AL
	TECHNIQUES	
2.1. THE CLA	ASSICAL CYCLOTRON	38
2.2. THE AV	F CYCLOTRON	41
2.3. IRRADIA	ATION BY MGC-20 CYCLOTRON	41
2.3.1. MA	GNET	43
2.3.2. AC	CELERATING CHAMPER	44
2.3.3. RES	SONANCE SYSTEM	44
2.3.4. ION	SOURCE	45
2.3.5. GA	S SUPPLY SYSTEM OF THE ION SOURCE	46
2.3.6. VA	CUUM SYSTEM	46
2.3.7. WA	ATER COOLING SYSTEM	46
2.3.8. BEA	AM EXTRACTION SYSTEM	47
2.3.9. BEA	AM MONITORING AND DIAGNOSTICS	47
	AM TRANSPORT SYSTEM	48
2.4. IRRADIA	ATION BY ³ He	49
2.5. STACKE	D-FOIL TECHNIQUE	50
2.6. TARGET	PREPARATION	51
2.7. ACTIVIT	TY MEASUREMENT	54
CHAPTER	3: THEORETICAL CALCULATIONS	<u>S</u>
3.1. ALICE-	IPPE	58
3.2. TALYS	-1.2	60
3.3. EMPIR	E-03 (ARCOLA)	65
<u>CHAPTE</u>	R 4: RESULTS AND DISCUSSION	
	TION FUNCTIONS OF TIN ISOTOPES	76
4.1.1. For	RMATION OF ^{117m} Sn	76
4.1.2. For	RMATION OF ^{113g} Sn	78

Contents

FORMATION OF 111 Sn	80		
FORMATION OF 110 Sn	82		
ITATION FUNCTIONS OF INDIUM	83		
ISOTOPES			
FORMATION OF ^{117m,g} In	83		
	86		
FORMATION OF 115m In	87		
FORMATION OF ^{114m} In	89		
FORMATION OF ^{113m} In	90		
FORMATION OF ^{111g} In	92		
FORMATION OF ^{110m,g} In	93		
FORMATION OF $^{109\mathrm{g}}\mathrm{In}$	96		
FORMATION OF ^{108g} In	98		
FORMATION OF $^{107\mathrm{g}}\mathrm{In}$	99		
ITATION FUNCTIONS OF CADMIUM	101		
OPES			
FORMATION OF 115g Cd	101		
FORMATION OF ^{111m} Cd	102		
MERIC CROSS SECTION RATIOS	104		
	104		
ISOMERIC CROSS SECTION RATIO OF 110m,gIn	106		
LD CALCULATIONS	108		
SION	112		
CONCLUSION REFERENCES			
HIMMARY	114 XI		
	FORMATION OF 110 Sn ITATION FUNCTIONS OF INDIUM OPES FORMATION OF 117m,gIn FORMATION OF 115mIn FORMATION OF 114mIn FORMATION OF 113mIn FORMATION OF 111gIn FORMATION OF 110m,gIn FORMATION OF 108gIn FORMATION OF 107gIn ITATION FUNCTIONS OF CADMIUM OPES FORMATION OF 111mCd MERIC CROSS SECTION RATIOS ISOMERIC CROSS SECTION RATIO OF 117m,gIn ISOMERIC CROSS SECTION RATIO OF 110m,gIn ISOMERIC CROSS SECTION RATIO OF 110m,gIn LD CALCULATIONS SION ICES		

1.1. RADIOACTIVITY

Nuclear physics as a subject distinct from atomic physics could be said to date from 1896, the year that Henri Becquerel observed that photographic plates were being fogged by an unknown radiation emanating from uranium ores. He had accidentally discovered radioactivity: the fact that some nuclei are unstable and spontaneously decay [Martin, 2006]. Rutherford started working with these newly discovered uranium rays believing that they were similar to the X-rays discovered by Röntgen [Joseph Magill and Jean Galy, 2005]. In the years that followed, the phenomenon was extensively investigated, notably by the husband and wife team of Pierre and Marie Curie and by Ernest Rutherford and his collaborators and it was established that there were three distinct types of radiation involved: these were named (by Rutherford) α , β and γ rays. In 1897 J. J. Thomson was the first to identify the cathode ray -that had been observed to occur when an electric field was established between electrodes in an evacuated glass tube- to be free electrons (the name 'electron' had been coined in 1894 by Stoney) [Martin, 2006]. In 1900 Becquerel identified that β rays consists of electrons. And in the same year Villard and Becquerel propose that y radiation is of electromagnetic nature; finally proven in 1914 by Rutherford and Andrade. In 1903 Rutherford proved that α radiation is shown to be ionized helium atoms. The rate of radioactive decay per unit weight was found to be fixed for any specific radioelement, no matter what its chemical or physical state was, though this rate differed greatly for different radioelements. Radioactive decay is a random process. Among the atoms in a sample undergoing decay it is not possible to identify which specific atom will be the next to decay [Gregory et al., 2002]. The activity (A) is the number of disintegrations per unit time and is proportional to the number of radioactive atoms

$$A = -\frac{dN}{dt} = \lambda t \tag{1-1}$$

where (λ) is the decay constant and (N) is the number of nuclei at any time (t). Using simple mathematical treatment, the well known decay low can be obtained,

$$A = A_0 e^{-\lambda t} \tag{1-2}$$

1.2. ISOTOPES

In 1913, Fajans and Soddy independently stated that each element could have atoms of different weight and with different radioactive properties, and Soddy introduced in 1914 the name isotope for different atomic species of an element. In 1913 Thomson discovered that an accelerated beam of neon atoms is divided into two beams, corresponding to atoms having a mass number 20 and 22, when it passed through a crossed electric and magnetic field. After World War I, Aston resumed Thomson's work and developed mass spectrometers that could be used to measure very precisely the mass of atoms as well as their relative abundance for individual elements. He demonstrated that most elements have more than one isotope [Gregory et al., 2002]. The explanation of isotopes had to wait 20 years until a classic discovery by Chadwick in 1932. He discovered the neutron and in so doing had produced almost the final ingredient for understanding nuclei [Martin, 2006]. A nuclear species, or nuclide, is defined by (N), the number of neutrons, and (Z), the number of protons. The mass number (A) is the total number of nucleons, i.e. A = N + Z. Thus the isotopes of an element have the same number of protons i.e. same charge but different number of neutrons i.e. the same atomic number but different mass number. From this point, the isotopes have different nuclear properties but practically have identical chemical properties, since these arise from the (Z) electrons around the nucleus [Basdevant et al., 2005]. It is possible for nuclei to have the same mass number but different number of protons and different number of neutrons. Such nuclei are called isobars. Others have the same number of neutrons and different number of protons. They are called isotones. It is convenient also to identify Isomers as, the same nuclide (same Z and A) in which the nucleus is in different long lived excited states. For example, an isomer of (Tc) is (99mTc) where the (m) denotes the longest-lived excited state (i.e., a state in which the nucleons in the nucleus are not in the lowest energy state).

1.2.1. PRODUCTION OF ISOTOPES

Stable isotopes, as their name suggests, do not undergo radioactive decay. Radioactive isotopes, or radioisotopes, are available with a great variety of half lives, types of radiation, and energy [Raymond, 2009]. Of the nuclei found on Earth, the vast majority is stable. This is so because almost all short-lived radioactive nuclei have decayed during the history