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Abstract

ABSTRACT

The radioisotopes of indium, cadmium and tin have many
practical and medical applications. Their standard routes for production
are proton or deuteron induced reactions on natural or enriched cadmium
or tin. The production via *He induced reactions on natural or enriched
cadmium was rarely discussed.

In this study *He induced reactions on natural cadmium were
measured utilizing the stacked-foil technique. The primary incident beam
energy was 27 MeV extracted from the MGC-20E cyclotron, Debrecen,
Hungary. The  excitation  functions  for  the  reactions
nath 3He,x 115g,111mCd, 117m,g,116m,115m,114m,113m,111g,110m,g,109g,108g,107gIn and
117m 1130111105 \were evaluated. The data were compared with the
available literature data.

Different theoretical nuclear reaction models were also used to
predict the cross sections for those reactions. The used models were
ALICE-IPPE, TALYS-1.2 and EMPIRE-03. The experimental data were
compared also to the theoretical model calculations. The theoretical
models did not describe most of the experimental results.

The isomeric cross section ratios for the isomeric pairs **"™9In
and °™9In were calculated. The isomeric cross section ratio depends on
the spins of the states of the interested isomeric pair. The calculated
isomeric ratios helped to identify the mechanisms of the reactions
involved.

The integral yields for some medically relevant isotopes were
calculated using the excitation function curves.
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Chapter One Introduction and Literature Review

1.1. RADIOACTIVITY

Nuclear physics as a subject distinct from atomic physics could be
said to date from 1896, the year that Henri Becquerel observed that
photographic plates were being fogged by an unknown radiation
emanating from uranium ores. He had accidentally discovered
radioactivity: the fact that some nuclei are unstable and spontaneously
decay [Martin, 2006]. Rutherford started working with these newly
discovered uranium rays believing that they were similar to the X-rays
discovered by Rontgen [Joseph Magill and Jean Galy, 2005]. In the
years that followed, the phenomenon was extensively investigated,
notably by the husband and wife team of Pierre and Marie Curie and by
Ernest Rutherford and his collaborators and it was established that there
were three distinct types of radiation involved: these were named (by
Rutherford) a, p and y rays. In 1897 J. J. Thomson was the first to
identify the cathode ray -that had been observed to occur when an
electric field was established between electrodes in an evacuated glass
tube- to be free electrons (the name ‘electron’ had been coined in 1894
by Stoney) [Martin, 2006]. In 1900 Becquerel identified that B rays
consists of electrons. And in the same year Villard and Becquerel
propose that y radiation is of electromagnetic nature; finally proven in
1914 by Rutherford and Andrade. In 1903 Rutherford proved that o
radiation is shown to be ionized helium atoms. The rate of radioactive
decay per unit weight was found to be fixed for any specific
radioelement, no matter what its chemical or physical state was, though
this rate differed greatly for different radioelements. Radioactive decay is
a random process. Among the atoms in a sample undergoing decay it is
not possible to identify which specific atom will be the next to decay
[Gregory et al., 2002]. The activity (A) is the number of disintegrations
per unit time and is proportional to the number of radioactive atoms

dN_
dt

At (1-1)

where (1) is the decay constant and (N) is the number of nuclei at any
time (t). Using simple mathematical treatment, the well known decay low
can be obtained,

A=Aje M (1-2)




Chapter One Introduction and Literature Review

1.2. ISOTOPES

In 1913, Fajans and Soddy independently stated that each element
could have atoms of different weight and with different radioactive
properties, and Soddy introduced in 1914 the name isotope for different
atomic species of an element. In 1913 Thomson discovered that an
accelerated beam of neon atoms is divided into two beams,
corresponding to atoms having a mass number 20 and 22, when it passed
through a crossed electric and magnetic field. After World War 1, Aston
resumed Thomson’s work and developed mass spectrometers that could
be used to measure very precisely the mass of atoms as well as their
relative abundance for individual elements. He demonstrated that most
elements have more than one isotope [Gregory et al., 2002]. The
explanation of isotopes had to wait 20 years until a classic discovery by
Chadwick in 1932. He discovered the neutron and in so doing had
produced almost the final ingredient for understanding nuclei [Martin,
2006]. A nuclear species, or nuclide, is defined by (N), the number of
neutrons, and (Z), the number of protons. The mass number (A) is the
total number of nucleons, i.e. A = N + Z. Thus the isotopes of an element
have the same number of protons i.e. same charge but different number
of neutrons i.e. the same atomic number but different mass number. From
this point, the isotopes have different nuclear properties but practically
have identical chemical properties, since these arise from the (2)
electrons around the nucleus [Basdevant et al., 2005]. It is possible for
nuclei to have the same mass number but different number of protons and
different number of neutrons. Such nuclei are called isobars. Others have
the same number of neutrons and different number of protons. They are
called isotones. It is convenient also to identify Isomers as, the same
nuclide (same Z and A) in which the nucleus is in different long lived
excited states. For example, an isomer of (Tc) is (**™Tc) where the (m)
denotes the longest-lived excited state (i.e., a state in which the nucleons
in the nucleus are not in the lowest energy state).

1.2.1. PRODUCTION OF ISOTOPES

Stable isotopes, as their name suggests, do not undergo radioactive
decay. Radioactive isotopes, or radioisotopes, are available with a great
variety of half lives, types of radiation, and energy [Raymond, 2009]. Of
the nuclei found on Earth, the vast majority is stable. This is so because
almost all short-lived radioactive nuclei have decayed during the history

2




