Management of Anterior Mandibular Fracture Using Herbert Lag Screw Versus Double Plating Technique

Thesis submitted to the Faculty of Oral and Dental Medicine, Ain Shams University. In partial fulfillment of the requirements for Master Degree in Oral and Maxillofacial Surgery

Ahmed Ibrahim El Minshawi

B.D.S – Faculty of Oral & Dental Medicine - MSA University Resident of Oral and Maxillofacial Surgery at Nasser Institute Hospital for Research and Treatment

Supervisors

Fahmy Abdel Aal Mobarak

Professor of Oral & Maxillofacial Surgery
Faculty of Oral & Dental medicine
Cairo University
Head of the Department of CMFS
Nasser Institute Hospital for Research and Treatment

Salah Abdel Fattah Ahmed

Professor of Oral & Maxillofacial Surgery Head of the Department of OMFS Faculty of Oral & Dental Medicine Ain Shams University

Mohamed Abdel Magid Katamish

Professor of Oral & Maxillofacial Surgery Faculty of Oral & Dental Medicine Ain Shams University

Faculty of Dentistry
Ain Shams University
2018

<u>Acknowledgments</u>

I would like to give my appreciation and gratitude to Dr. Fahmy Abdel Aal Mobarak. Professor of Oral and Maxillofacial Surgery. Faculty of Oral and Dental Medicine. Cairo University, for his incredible help, great suggestions and encouragement that helped me in all time during this research.

I am also greatly indebted to **Dr. Salah Abdel Fattah Ahmed**.

Professor of Oral and Maxillofacial Surgery, Faculty of Oral and

Dental Medicine, Ain Shams University, for his valuable advice and

continuous evaluation and remarks during this work and the curriculum

courses.

Last but not least, I would like to thank Dr. Mohamed Abdel Magid Katamish. Professor of Oral and Maxillofacial Surgery. Faculty of Oral and Dental Medicine. Ain Shams University, for his help, kindness and suggestions throughout this study that were essential to dress this work to its final form.

Dedication

To my father, you always have been my inspiration despite the distance between us.

To my mother and brothers thank you for your continuous support in good and bad times.

To my second family at oral and maxillofacial department at Nasser Institute Hospital, thank you my colleagues for your wonderful collaboration, support and help during the whole process of working on this study.

List of Contents

Introduction	1
Review of Literature	4
Aim of the Study	17
Patients and Methods	19
Results	55
Discussion	67
Summary and Conclusion	77
Appendix	81
References	92
Arabic Summary	101

List of Tables

Table 1: Age of patients in both groups (mean and standard deviation) 56
Table 2: prevalence of age, sex, etiology and associated fractures of patients
treated with Herbert screw. 57
Table 3: prevalence of age, sex, etiology and associated fractures of patients
treated with plates and screws
Table 4: Percentage of lower lip numbness in both groups at different stages
of timeline
Table 5: Mean and standard deviation (SD) for IMD for different tested
groups
Table 6: Mean and standard deviation (SD) for IMD for different follow-up
periods
Table 7: Mean and standard deviation (SD) for IRD for different tested groups.
Table 8: Mean and standard deviation (SD) for IRD for different follow-up
periods65

List of Figures

Figure 1: Distribution of the fracture site
Figure 2: Gap healing has occurred opposite to the compression plate, with
direct bone deposition between the cortical ends
Figure 3: Osteosynthesis material. Stellate plates of 12, 18, 25 mm length and
4 mm width
Figure 4: Champy's line of osteosynthesis
Figure 5: A lag screw (top). Note the absence of threads. Cortical screw
(Below). This screw can be used to impart compression to a fracture by over
drilling the outer (near) cortex so the threads only engage the far cortex 11
Figure 6: The standard PA radiograph for post-operative ORIF of scaphoid
bone using headless screw ⁾
Figure 7: Diagrammatic image shows the engagement of Herbert screw and
sinking of the headless screw. 12
Figure 8: Diagram shows the difference in design between the conventional
lag screw and headless Herbert screw
Figure 9: True lag screw compression of the fracture fragments upon
tightening. 14
Figure 10:illustration showing different patterns of placement of lag screws
for fractures of the anterior mandible
Figure 11: Use of a single lag screw combined with arch bar and bridle wire
for fractures around the mental foramen
Figure 12: Supplementation of fixation by application of a 2.0-mm bone plate.
Figure 13: preoperative panoramic radiograph of left parasympheseal fracture
mesial to the canine

Figure 14: preoperative photograph showing forehead lacerations that have
been closed previously and deviated nose
Figure 15: Intraoral photo revealing the malocclusion at the anterior area and
bridle wire is done to stabilize the segments primarily
Figure 16: preoperative axial cut at the level of alveolar bone showing
parasympheseal fracture
Figure 17: preoperative axial cut at the level of inferior border showing
parasympheseal fracture
Figure 18: preoperative coronal cuts showing the intact condyles bilaterally at
different levels
Figure 19: preoperative coronal cuts showing the intact condyles bilaterally
Figure 20:preoperative 3D reconstructed multislice CT scan showing the
fractured mandible with other associated facial bone fractures31
Figure 21: preoperative 3D reconstructed multislice CT scan showing the
fractured mandible with other associated facial bone fractures31
Figure 22: Intraoral mandibular vestibular approach was used to expose the
symphysis to make sure that the both segments were adequately visible and
properly reduced with minimal gap interference
Figure 23: Intraoperative photos after arch bar placement and before exposure
of the symphysis
Figure 24: photograph showing the Herbert Screw Box
Figure 25:Insertion of K-wire to be used as a guide for the next step of
preparation by cannulated drills
Figure 26: Preparation of the insertion site using electric power drill 33
Figure 27: Intraoperative photo showing bone tapping of the drill hole using
bone tape

Figure 28: Intraoperative photo after reduction using bone compression clamp
and insertion of K-wire. 34
Figure 29: Intraoperative photos during Herbert screw placement along the
path maintained by K wire
Figure 30: Herbert screw insitu
Figure 31: Intraoperative Image with C-arm to verify the proper placement of
Herbert screw. 36
Figure 32: postoperative axial cuts showing the engagement of Herbert screw
into both segments
Figure 33: postoperative 3D reconstructed multislice CT scan showing the
fixation of fractured mandible and the other associated facial bone fractures
Figure 34: postoperative 3D reconstructed multislice CT scan from the
posterior aspect to reveal the degree of bone reduction and compression
produce by Herbert screw. 37
produce by Herbert screw
Figure 35: postoperative clinical photograph revealing the proper reduction of
Figure 35: postoperative clinical photograph revealing the proper reduction of facial form
Figure 35: postoperative clinical photograph revealing the proper reduction of facial form
Figure 35: postoperative clinical photograph revealing the proper reduction of facial form
Figure 35: postoperative clinical photograph revealing the proper reduction of facial form
Figure 35: postoperative clinical photograph revealing the proper reduction of facial form
Figure 35: postoperative clinical photograph revealing the proper reduction of facial form
Figure 35: postoperative clinical photograph revealing the proper reduction of facial form
Figure 35: postoperative clinical photograph revealing the proper reduction of facial form
Figure 35: postoperative clinical photograph revealing the proper reduction of facial form

Figure 42: preoperative coronal cuts showing the intact condyles bilaterally.
40
Figure 43: preoperative 3D reconstructed multislice CT scan showing the
fractured mandible with the associated left ZMC
Figure 44: preoperative 3D reconstructed multislice CT scan showing the
fractured mandible with the associated left ZMC
Figure 45: Intraoperative photo after reduction using bone compression clamp
please notice the minimal gap found between both stumps
Figure 46: Intraoral mandibular vestibular approach was used to expose the
symphysis to make sure that the both segments were adequately visible,
minimal displacement is shown before reduction
Figure 47: postoperative 3D reconstructed multislice CT scan showing the
fixation of fractured mandible and the associated left ZMC fracture 43
Figure 48: postoperative axial cuts showing the fixation of bicortical plate and
screws in both segments at the inferior border
Figure 49: postoperative clinical photograph revealing the proper reduction
with maximum occlusion and intercuspation
Figure 50: postoperative clinical photograph
Figure 51: postoperative OPG revealing the proper reduction and fixation with
disappearance of the fracture line
Figure 52: DICOM files imported to InVivo 5 Anatomage before reorientation
of slices
Figure 53: Axial cut reorientation passing through the anterior and posterior
nasal spine to get this position as a standard during the second measurement.
Figure 54: sagittal cuts reorientation
Figure 55: Coronal cuts reorientation through the middle cranial fossa 52

Figure 56: DICOM file imported into InVivo Anatomage after slices
reorientation for the purpose of standardization
Figure 57: detecting the mental foramina bilaterally for baseline
measurements
Figure 58: measuring the tip of the lingula bilaterally to determine the baseline
distance to be compared later on with the six-months postoperative
measurements
Figure 59: Bar chart showing the mean patients ages for both study and control
groups
Figure 60: Percentage of the total number of males and females in both groups.
Figure 61: Staked bar chart showing the distribution of the mode of trauma in
each group
Figure 62: intra oral photograph showing exposed plate and screws of the same
patient presented at the control group
Figure 63: Bar chart showing the mean IMD for both groups
Figure 64: line chart showing the mean IMD for different tested follow-up
periods
Figure 65: Bar chart showing the mean IRD for different tested groups 65
Figure 66: line chart showing the mean IRD for different tested follow-up
periods

List of Abbreviations

CT Computed tomography CBCT Cone beam computed tomography DICOM Digital Imaging and Communication in Medicine DCP Dynamic compression plate ECG Electrocardiogram FFH Fall From Height IPA Inter-personal Assaults IV Intra-Venous IM Intra-Muscular IRD Inter-mental Distance IMD Inter-mental Distance	АО	Arbeitsgemeinschaft fur Osteosynthesefragen
CBCT Cone beam computed tomography DICOM Digital Imaging and Communication in Medicine DCP Dynamic compression plate ECG Electrocardiogram FFH Fall From Height IPA Inter-personal Assaults IV Intra-Venous IM Intra-Muscular IRD Inter-ramal Distance IMD Inter-mental Distance		Association for study of internal fixation
DICOM Digital Imaging and Communication in Medicine DCP Dynamic compression plate ECG Electrocardiogram FFH Fall From Height IPA Inter-personal Assaults IV Intra-Venous IM Intra-Muscular IRD Inter-ramal Distance IMD Inter-mental Distance	СТ	Computed tomography
DCP Dynamic compression plate ECG Electrocardiogram FFH Fall From Height IPA Inter-personal Assaults IV Intra-Venous IM Intra-Muscular IRD Inter-ramal Distance IMD Inter-mental Distance	СВСТ	Cone beam computed tomography
ECG Electrocardiogram FFH Fall From Height IPA Inter-personal Assaults IV Intra-Venous IM Intra-Muscular IRD Inter-ramal Distance IMD Inter-mental Distance	DICOM	Digital Imaging and Communication in Medicine
FFH Fall From Height IPA Inter-personal Assaults IV Intra-Venous IM Intra-Muscular IRD Inter-ramal Distance IMD Inter-mental Distance	DCP	Dynamic compression plate
IPA Inter-personal Assaults IV Intra-Venous IM Intra-Muscular IRD Inter-ramal Distance IMD Inter-mental Distance	ECG	Electrocardiogram
IV Intra-Venous IM Intra-Muscular IRD Inter-ramal Distance IMD Inter-mental Distance	FFH	Fall From Height
IM Intra-Muscular IRD Inter-ramal Distance IMD Inter-mental Distance	IPA	Inter-personal Assaults
IRD Inter-ramal Distance IMD Inter-mental Distance	IV	Intra-Venous
IMD Inter-mental Distance	IM	Intra-Muscular
	IRD	Inter-ramal Distance
	IMD	Inter-mental Distance
IMF Inter-maxillary fixation	IMF	Inter-maxillary fixation

K-wire	Krischner wire
MIMICS	Materialise Interactive Medical Image Control Systems
MMF	Maxillo-Mandibular fixation
MVA	Motor Vehicle Accident
NSAIDs	Non-steroidal anti-inflammatory drugs
OPG	Orthopantomogram
ORIF	Open reduction internal fixation
RTA	Road traffic accident
SD	Standard Deviation
STL	Standard Template Library
SE	Standard Error
3D	Three Dimensional

Introduction

Introduction

One of the most rewarding and demanding aspects of surgical practice is the management of the patient who suffered facial trauma. The abruptness of the injury can cause intense emotional distress even when only minor injuries are present. Therefore, the clinician must effectively deal with the patient physical injuries as well as the patient's emotional status.

Mandibular fractures constitute the bulk of the trauma treated by Maxillofacial specialty services because it is fracture occurs frequently more than any other facial bones, despite the fact that the mandible is one of the large and strong facial bone. These fractures result from a multitude of causes, including sports injuries, motor vehicle accidents, falls, and interpersonal violence. The management of mandibular fractures includes various techniques, depending on the surgeon's specialty and training, location, and geographical preferences.

The aim of mandibular fracture treatment is the restoration of anatomical form and function, with particular care to establish the occlusion. Traditionally, this has been achieved by immobilizing the jaws using various wiring techniques. In the past years, interest has increased for different methods of open reduction and internal fixation. Methods of ORIF have changed and diversified enormously in the past few years. They have become smaller and simpler to handle, and extra-oral incisions can be avoided.

Different approaches and fixation techniques are used. The extra-oral approaches carry particular risks, such as facial nerve damage and visible scars. These can be largely avoided by using the intraoral approach.

Rigid internal fixation of mandibular fractures eliminates the need for intermaxillary fixation and facilitates stable anatomic reduction while reducing the risk of postoperative displacement of the fractured fragments, allowing immediate return to function. However, it is not always easy to define what adequate fixation for a given mandibular fracture is. This is depending on the characteristics of the fracture, patient, and kind of postoperative function desired for the particular case.

anterior mandible, between the two mental foramina, is uniquely suited to the application of lag screw fixation. Many methods of osteosynthesis for anterior mandibular fractures have been described, including fixation of fragments with lag screws, reconstruction plates, compression plates and miniplates.

Therefore, the purpose of this study is to compare between plates and Herbert screws in the fixation of anterior mandibular fracture.