Reversal of Hepatic Fibrosis

Essay
Submitted for partial fulfillment of Master Degree
In General Surgery
By

Wael Omar Khalifa

M.B., B.Ch. Faculty of Medicine – Ain Shams University

Supervised by

Prof. Alaa El Din Ismail

Prof. of General Surgery
Faculty of Medicine – Ain Shams University

Prof. Mohamad Fathy Abd El Ghafar

Assistant Prof. of General Surgery Faculty of Medicine – Ain Shams University

Prof. Mohamad Mohamad Bahaa El Din

Assistant Prof. of General Surgery Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2009

نقض التليف الكبدى

رسالة رسطئه للحصول على درجة الماجستير في الجراحة العامة

مقدمة من الطبيب

وائل عمر خليفه

تحت إشراف

الأستاذ الدكتور/ علاء الدين اسماعيل

أستاذ الجراحة العامة كلية الطب – جامعة عين شمس

الأستاذ الدكتور/ محمد فتحى عبد الغفار

أستاذ مساعد الجراحة العامة كلية الطب – جامعة عين شمس

الأستاذ الدكتور/ محمد محمد بهاء الدين

أستاذ مساعد الجراحة العامة كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠٠٩

Acknowledgement

First and foremost, thanks for **ALLAH** for guiding and helping me to finish this work.

I would like to express my deepest gratitude for the continuous help and encouragement offered by *Professor Dr / Alaa Eldin Ismail* professor of general surgery, faculty of medicine, Ain Shams University who helped me throughout this work devoting much of his precious time for guidance and supervision.

I wish to express my appreciation to *Dr / mohammed fathy* assistant professor of general surgery, faculty of medicine, Ain Shams University for his kind help, great effort and valuable advice throughout the work.

I wish to express my appreciation to *Dr / mohammed bahaa* assistant professor of general surgery, faculty of medicine, Ain Shams University for his kind help, great effort and valuable advice throughout the work.

List of tables

No.	Title	Page
1	Metablism Related To The Zonal Location Of The Hepatocyte	21
2	Amount of the two types of ECM in normal liver with relative cellular sources.	30
3	Amount of the two types of ECM in fibrotic liver with relative cellular sources.	31
4	Components of histological activity index	63
5	Modified HAI grading: necro- inflammatory scores	64
6	Modified staging: architectural changes, fibrosis and cirrhosis	66
7	Characteristics of an ideal marker of liver fibrosis	68
8	Diseases in which fibrosis can be reduced by treating the underlying disorder	97

List of figures

No.	Title	Page
1	hepatic lobule of liver	6
2	hepatic lobule; blood and bile paths	7
3	The Complex Acinus	8
4	Organelles Of Hepatocyte	11
5	Pathways of endocytosis from the sinusoidal membranes	24
6	(A) Normal liver, (B) Injured liver with fibrosis	33
7	HSCs activation	38
8	Typical morphology of quiescent hepatic stellate cells.	39
9	Cellular mechanisms of liver fibrosis	41
10	Sequence of events involved in fibrosis.	52

List of abbreviations

Angiotensin converting enzyme inhibitor
Adenosine diphosphate
Alanine aminotransferase
AST to platelet ratio index
Angiotensin receptor blocker
Aspartate aminotransferase
Angiotensin 1 receptor
Area under the curve
Bone marrow
Chronic liver disease
Computerized tomography
Discoidin domain receptors
Extracellular matrix
Epidermal growth factor
European Liver Fibrosis Group
Endothelin-1
Endothelin A receptor
Granulocyte colony stimulating factor
Gamma glutamyl transpeptidase
Göteborg University Cirrhosis Index
Hyaluronic acid
Histological activity index
Hepatitis B virus
Hepatocellular carcinoma
Hepatitis C virus
Hepatocyte growth factor
Human immunodeficiency virus
Hepatic stellate cells
Interferon

	
INR	International normalized ratio
MCP-1	Monocyte chemotactic protein-1
MMP	Matrix metalloproteinase
MRI	Magnetic resonance imaging
NASH	Non alcoholic steatohepatitis
NO	Nitric oxide
NPV	Negative predictive value
OLT	Orthotopic liver transplantation
PDGF	Platelet derived growth factor
PICP	Procollagen type I carboxyterminal peptide
PIIINP	Procollagen type III aminoterminal peptide
PLT	Platelets
PPV	Positive predictive value
PPAR	Peroxisome proliferators activated nuclear receptors
RER	Rough endoplasmic reticulum
RME	Receptor mediated endocytosis
ROC	Receiver operatot characteristic
ROS	Reactive oxygen species
RTKs	Receptor tyrosine kinases
SAMe	S-adenosyl-L- methionine
SER	Smooth endoplasmic reticulum
TGF	Transforming growth factor
TGP	Transforming growth factor
Th	T-helper cell
TIMP	Tissue inhibitor of metalloproteinases
TNF	Tumour necrosing factor
ULN	Upper limit normal
US	United States

List of contents

Subject	Page
Acknowledgement	Ι
List of tables	II
List of figures	III
List of abbreviations	IV
Introduction and aim of the work	1
Review of litterature	
Chapter 1: Microanatomy of the liver	5
Chapter 2: Pathogenesis of liver fibrosis	32
Chapter 3: Diagnosis of liver fibrosis	58
Chapter 4: Clinical aspects of liver fibrosis	84
Chapter 5: Treatment of liver fibrosis	93
Chapter 6: Reversibility of liver fibrosis	110
English summary	118
References	122
Arabic summary	

Introduction

Fibrosis is a wound healing response in which damaged regions are encapsulated by an extra cellular matrix or scar. It develops in almost all patients with chronic liver injury at variable rates depending in part upon the cause of liver disease and host factors (*Poynard et al.*, 2003a).

Fibrosis occurs earliest in regions where injury is most severe, particularly in chronic inflammatory liver disease due to alcohol or viral infection (*Ismair et al.*, 2001).

Hepatic fibrosis refers to the accumulation of interstitial or 'scar' extracellular matrix after either acute or chronic liver injury. Cirrhosis, the end-stage of progressive fibrosis, is characterized by septum formation and rings of scar that surround nodules of hepatocytes. Typically fibrosis requires years or decades to become clinically apparent, but notable exceptions in which cirrhosis develops over months may include pediatric liver disease (e.g. biliary atresia), drug-induced liver disease, and viral hepatitis associated with immunosuppression after liver transplantation (*Friedman*, 2000)

There has been great progress made in our understanding of the cellular mechanisms of hepatic fibrosis. The recognition that the hepatic stellate cell, (formerly know as lipocyte, Ito, or fat-storing cell), played a central role in the fibrotic response was key to our understanding. Stellate cells undergo a process known as activation, in response to any insult. Activation is a broad phenotypic response, characterized by distinct functional changes in proliferation, fibrogenesis, contractility, cytokine secretion, and matrix degradation. Insights gained into the molecular regulations of stellate cell activation may lead to new antifibrotic therapies, which may reduce morbidity and mortality in patients with chronic liver injury (*Albanis and Friedman*, 2001).

Liver fibrosis was historically thought to be a passive and irreversible process due to collapse of hepatic parenchyma and its substitution with collagen-rich tissue currently, it is considered a model of wound-healing response to chronic liver injury early clinical reports in 1970s suggested that advanced liver fibrosis is potentially reversible (*Bataller and Brenner*, 2005).

While fibrosis is reversible in its initial stages, progressive fibrosis can lead to cirrhosis. The exact point when fibrosis becomes irreversible is incompletely understood. However, increasing evidence suggests that even early stages of cirrhosis may be reversible (*Bonis et al.*, 2001).

There are two main groups of non-invasive methodologies for the evaluation of hepatic fibrosis and its progression. The first group, defined "serum markers", is aimed at predicting fibrosis stage and, possibly, other prognostic information, using parameters measurable in serum. The second group includes methodologies derived from elaboration of parameters obtainable with the current liver imaging techniques (ultrasound, computed tomography (CT) scan, magnetic resonance) or to the innovative use of principles of physics (that is, transient elastography) (*Pinzani*, 2006).

The accurate diagnosis of hepatitis C virus (HCV)-related fibrosis is crucial for prognostication and treatment decisions. Due to the limitations of biopsy, noninvasive alternatives including FibroTest and FibroScan have been developed (*Shaheen et al.*, 2007).

Interferon therapy seemed to reduce the progression of hepatic fibrosis and cause regression of fibrosis in patients with virologic response to treatment, and it reduced progression of hepatic fibrosis in patients with nonsustained virologic response (*Shiratori et al.*, 2000).

Recent reports have shown the capacity of mesenchymal stem cells (MSCs) to differentiate into hepatocytes in vitro and in vivo. MSCs administration could repair injured liver, lung, or heart through reducing inflammation, collagen deposition, and remodeling. These results provide a clue to treatment of liver fibrosis (*Zhao et al.*, 2005).

We are on the cusp of new era, in which significant progress in basic research is moving the field towards novel approaches for the diagnosis and therapy of hepatic fibrosis. Accelerating progress is anticipated once validated noninvasive biomarkers of fibrosis are developed, as there are ample therapeutic targets, and many compounds in the drug development pipeline will soon be available for clinical study. If successful, antifibrotic therapy could transform the management of patients with progressive liver disease, having a significant beneficial health impact (*Friedman*, 2004).

Aim of the work

The aim of this study is to highlight the issue of hepatic fibrosis, its pathogenesis, reversibility and recent modalities in management of hepatic fibrosis.

MICROANATOMY OF THE LIVER

HEPATIC MORPHOLOGY

Kiernan (1833) introduced the concept of hepatic lobules as the basic architecture. He described circumscribed pyramidal lobules consisting of a central tributary of the hepatic vein and at the periphery, a portal tract containing bile duct, portal vein radicle and hepatic artery branch. Columns of liver cells and blood-containing sinusoids extended between these two systems.

Stereoscopic reconstructions and scanning electron microscopy have shown the human liver as columns of liver cells radiating from a central vein, and interlaced in orderly fashion by sinusoids (*Sherlock and Dooley, 1997*).

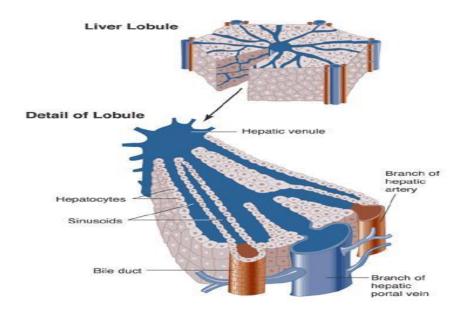


Figure (1): hepatic lobule of liver.

The liver tissue is pervaded by two systems of tunnels, the portal tracts and the hepatic central canals, which dovetail in such a way that they never touch each other. The terminal tunnels of the two systems are separated by about 0.5 mm. As far as possible the two systems of tunnels run in planes perpendicular to each other. The sinusoids are irregularly disposed, normally in a direction perpendicular to the lines connecting the central veins. The terminal branches of the portal vein discharge their blood into the sinusoids and the direction of flow is determined by the higher pressure in the portal vein than in the central vein.