

Comparative study between percutaneous k-wire fixation and ORIF of unstable proximal phalangeal fracture

Protocol of Thesis

Submitted for Partial Fulfillment of the Requirements of Master Degree in **orthopaedic surgery**

By **Mohamed Ahmed Abdallah Habib**

M.B., B. Ch. Faculty of Medicine, cairo University

Under Supervision of

Prof. Dr. Ahmed Mahmoud Kholeif

Professor of orthopaedic surgery Faculty of medicine Cairo University

Prof. Dr. Ashraf Nehad Moharram

Assisst.prof of orthopaedic surgery Faculty of medicine Cairo University

Prof.Dr. Mosatafa Mahmoud Hassanin

Assist.prof of orthopaedic surgery Faculty of medicine Cairo University

> Faculty of Medicine Cairo University 2013

ACKNOWLEDGMENT

First and foremost, I would like to thank ALLAH, the most gracious, the most merciful, for helping me to finish this work.

I would like to express my deepest gratitude and appreciation to my **Professor Dr. Ahmed kholeif**, Professor of Orthopedic surgery, faculty of Medicine, Cairo University.

It was through his supervision, his meticulous revision, cooperation, and kind encouragement that our work came to existence.

I would like also to express my deepest gratitude and appreciation to **Prof. Dr. Ashraf Moharram**, Assist. Professor of Orthopaedic Surgery, faculty of medicine, Cairo University, for his meticulous revision.

And I would like also to thank **Prof. Dr. Mostafa Mahmoud**, Assist Professor of Orthopaedic Surgery, faculty of medicine, Cairo University, for his enthusiastic cooperation and enormous help, unlimited guidance, patience and efforts.

Mohamed Ahmed Habib

ABSTRACT

Proximal phalangeal fracture is a common fracture affecting many patients during their work or participating in sports activities. It has a devastating effect on economical and psychological aspects of patients whose occupation is dependent on their manual activities. Many of these patients are not willing to have their hand immobilized for such long time.

This study aims to compare the results of proximal phalangeal fixation after percutaneous fixation using k-wires and ORIF.

The purpose of this prospective study is to document the functional outcome of different types of phalangeal fixation and to evaluate the clinical results.

Twenty nine patients was the sum of this study and were divided into three groups:

- Thumb group: three patients.
- Percutaneous fixation (Group A): eleven patients.
- ORIF (group B): fifteen patients.

These patients were followed up for a minimum of 6 months

Patients were 24 men and5 women within average age of 34 years.

All patients were evaluated for clinical and radiographic results. Fracture union was achieved in 29 cases (100%) at a mean of 6.29 weeks (5 to 8 weeks).

Return to work ranged from 6 weeks to 9 weeks according to their occupation.

Summary

This study proves that percutaneous fixation of unstable proximal phalangeal fractures is a useful technique that do not demand open reduction. Soft tissue dissection and swelling is minimized. One limitation is that motion exercises are often delayed due to immobilization and sometimes cannot be started until the K-wires are removed. However, for many patients, percutaneous k-wires can minimize complications and provide excellent results in comparison to ORIF.

KEY WORDS

UNSTABLE PROXIMAL PHALANGEAL FRACTURES

PERCUTANEOUS FIXATION

OPRN REDUCTION AND INTERNAL FIXATION

Contents

List of tables	а
List of figures	b,c.d,e,f
List of abbreviation	g
Aim of the work	h,i
Introduction	1
Anatomy	3
Classification	10
Diagnosis	16
Treatments	19
Patient and methods	42
Results and complication	69
Case presentation	81
Discussion	95
Conclusion	105

Summary	107
References	108
Arabic summary	

Figure number	content	Page number
Fig. 1	Bones of the hand	3
Fig. 2	Articular ligaments	5
Fig.3	Interosseous muscles	8
Fig.4	Lumbrical muscles	9
Fig.5	Proximal phalanx	10
Fig.6	London's classification	11
Fig.7	Condylar fracture	11
Fig.8	A/P and lat views of condylar fracture	12
Fig. 9(a,b)	Weiss hasting classification	12
Fig.10	Fracture lat. volar head of p1	13
Fig.11	Intra articular fracture of base of p1	14
Fig.12	Neck fracture	15
Fig.13	Obique shaft fracture	15
Fig.14	A/P and oblique view of rt hand	17
Fig.15	Lat. view showing all PIP	18
Fig.16	Stable fracture of P1 of index finger	20
Fig.17	Dynamic splinting	22

Fig.18	Hand function position	23
Fig.19	Post slab	24
Fig.20	Hand and wrist in function position	25
Fig.21	k-wires	27
Fig.22	Closed reduction and k- wires fixation	30
Fig.23	T.V fracture and k-wires fixation	30
Fig.24	P.c mini screw fixation	32
Fig.25	p.c mini screw	33
Fig.26	Lat. approach	35
Fig. 27	Plate and screw fixation	35
Fig.28	A/P view of plate fixation	36
Fig.29	Lag screw technique	37
Fig.30	Tension bands	38
Fig.31	Mini external fixator	40
Fig.32	Suzuki technique	41
Fig.33	6 weeks after suzuki	41
Fig.34	Age distribution	43
Fig.35	Sex distribution	44
Fig.36	Hand dominance	45
Fig.37	Mechanis of injury	46

Fig.38	Preoperative delay	47
Fig.39	Types of fracture	47
Fig.40	Site of fracture	48
Fig.41	Affected finger	49
Fig.42	Fracture base P1	52
Fig.43	Hand scrapping and hair shaving	55
Fig.44	Holding fracture with bone clamp	56
Fig.45	Reduction of fracture is verified under c arm	56
Fig.46	Multiple k-wires fixation	57
Fig.47	Multiple wires for closing the fracture	57
Fig.48	Post operative splinting	58
Fig.49	Pc mini screw	59
Fig.50	Use of mini screw	60
Fig.51	Optimal fracture reduction	60
Fig.52	Mini plate system	61
Fig.53	Closure of extensor tendon	63
Fig.54	Stabilization with k-wires	63
Fig.55	Applying p&s and tension bands	64
Fig.56	Dorsal approach	65
Fig.57	Multiple tension bands	66

Fig.58	Intra-operative c-arm of fracture reduction	66
Fig.59	Results of hand pain	70
Fig.60	Mean active ROM	72
Fig.61	Mean passive ROM	73
Fig.62	Grades of flexion	74
Fig.63	Grades of extension	75
Fig.64	Clinical union	76
Fig.65	Radiological union	77
Fig.66	Types of union	78
Fig.67	Employment status	79
Fig.68	Complication	80
Fig.69	Fracture head P1 A/P view	81
Fig.70	Fracture head P1 lat. view	82
Fig.71	Intra-operative reduction and fixation	82
Fig.72	Post-operative reduction	83
Fig.73	Pre-operative t.v shaft fracture of ring and little	85
Fig.74	Post-operative A/P view	86
Fig.75	6 weeks follow up	87
Fig.76	6 months follow up	88
Fig.77	Pre-operative fracture of ring P1	90

Fig.78	Post operative fixation with k-wires	90
Fig.79	6 weeks follow up	91
Fig.80	Pre-operative x-ray	93
Fig.81	Intra-operative under c-arm	93
Fig.82	6 weeks follow up	94

f

List of abbreviations

Abbreviation	The meaning
MP	Metacarpo-phalangeal joint
PIP	Proximal inter phalangeal joint
IP	Inter phalangeal joint
DIP	Distal inter phalangeal joint
PC	Per-cutaneous
ORIF	Open reduction and internal fixation
ROM	Range of motion
ТАМ	Total active motion
P1	Proximal phalanx
A/P	Antero-posterior view
Lat.	Lateral view

Aim of the work

Comparative study between percutaneous fixation using k-wires and ORIF using mini plates and screws, screws and tension band in the treatment of unstable proximal phalangeal fractures.

Protocol contains:

I- Review of literature:

- 1. Anatomy
- 2. Classification of proximal phalangeal fractures.
- 3. Diagnosis of fracture by:
 - History taking.
 - Clinical examination.
 - Imaging.
- 4. Treatment options.
 - Conservative.
 - Operative.

II- Patients and Methods:

The study will include 29 cases of unstable fracture of the proximal phalanx subjected to the following:

A- Diagnosis:

a. History and clinical examination.

- **b.** Imaging study:
 - i. (X- Ray).
 - ii. C.T.
- B- Technique.
- C- Post-operative management and follow up: Where patients will be evaluated clinically and radiologically till final follow up.
- D- Complications.
- E- Results: Patients will be evaluated clinically and radiologically.
- F- Discussion.
- G- Conclusion.
- H- Summary.
- I- References.
- J- Summary in Arabic.

Introduction

Introduction

Hand injury is extremely common and accounts for about 15% of the attendance at accidents and emergency departments. Fractures of phalanges are probably the most common fractures in the skeletal system. Causes of hand injuries are crush /compression injuries, blunt trauma, fall down, road traffic accidents, machinery injury and sports related activity. Proximal phalangeal fractures are considered unstable when they are irreducible, if acceptable reduction cannot be maintained, or if motion at adjoining joints cannot be started without loss of reduction. (**Thakur**, **2008**)

In this comparative study we will compare between two fixation options; percutaneous fixation (group A) and open reduction and internal fixation (group B).

Group A includes k-wires and screws.

Group B includes screws, plate and screws and tension bands.

The choice of fixation type depends upon fracture site and morphology. Each method of fixation has its own advantage and disadvantage e.g. K - wire can be inserted with minimal soft tissue stripping, preserving the blood supply to bone and enhancing the potential for healing. In addition, K - wires are less bulky compared with a plate or screws and allow for easy closure of soft tissues, however distraction may be a problem if the bone ends are not firmly impacted during K -wires insertion. k -wires do not provide stable fixation, and the necessary cast or splint immobilization may result in tendon adhesion and stiffness.